You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_prelu_op.py

304 lines
10 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
import six
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
from op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.nn.functional as F
def ref_prelu(x, weight):
x_t = x.copy()
weight = weight.reshape(1, -1, 1, 1)
neg_indices = x <= 0
assert x.shape == neg_indices.shape
x_t[neg_indices] = (x_t * weight)[neg_indices]
return (x_t, )
def ref_prelu_nn(x, num_parameters, init):
weight_np = np.full((num_parameters), init)
return ref_prelu(x, weight_np)
class TestFunctionalPReluAPI(unittest.TestCase):
def setUp(self):
self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
self.x_np = np.random.uniform(-1., 1., [1, 2, 3, 4]).astype('float32')
self.weight_np_0 = np.random.randn(1).astype('float32')
self.weight_np_1 = np.random.randn(self.x_np.shape[1]).astype('float32')
def static_check(self, weight_np):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.data('X', self.x_np.shape, 'float32')
weight = paddle.data('Alpha', weight_np.shape, 'float32')
out = F.prelu(x, weight)
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x_np,
'Alpha': weight_np},
fetch_list=[out])
out_ref = ref_prelu(self.x_np, weight_np)
self.assertEqual(np.allclose(out_ref, res[0]), True)
def dygraph_check(self, weight_np):
paddle.disable_static(self.place)
x = paddle.to_tensor(self.x_np)
weight = paddle.to_tensor(weight_np)
out = F.prelu(x, weight)
out_ref = ref_prelu(self.x_np, weight_np)
self.assertEqual(np.allclose(out_ref, out.numpy()), True)
paddle.enable_static()
def test_static_api(self):
self.static_check(self.weight_np_0)
self.static_check(self.weight_np_1)
def test_dygraph_api(self):
self.dygraph_check(self.weight_np_0)
self.dygraph_check(self.weight_np_1)
def test_error(self):
with paddle.static.program_guard(paddle.static.Program()):
weight_fp32 = paddle.data(
name='weight_fp32', shape=[1], dtype='float32')
# The input type must be Variable.
self.assertRaises(TypeError, F.prelu, x=1, weight=weight_fp32)
# The input dtype must be float16, float32, float64.
x_int32 = paddle.data(name='x_int32', shape=[2, 3], dtype='int32')
self.assertRaises(TypeError, F.prelu, x=x_int32, weight=weight_fp32)
# support the input dtype is float16
x_fp16 = paddle.data(name='x_fp16', shape=[2, 3], dtype='float16')
F.prelu(x=x_fp16, weight=weight_fp32)
class TestNNPReluAPI(unittest.TestCase):
def setUp(self):
self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
self.x_np = np.ones([1, 2, 3, 4]).astype('float32')
def test_static_api(self):
startup_program = paddle.static.Program()
train_program = paddle.static.Program()
with paddle.static.program_guard(train_program, startup_program):
x = paddle.data(name='X', shape=self.x_np.shape, dtype='float32')
m = paddle.nn.PReLU()
out = m(x)
exe = paddle.static.Executor(self.place)
exe.run(startup_program)
res = exe.run(train_program,
feed={'X': self.x_np},
fetch_list=[out])
out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
self.assertEqual(np.allclose(out_ref, res[0]), True)
def test_dygraph_api(self):
paddle.disable_static(self.place)
x = paddle.to_tensor(self.x_np)
m = paddle.nn.PReLU()
out = m(x)
out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
self.assertEqual(np.allclose(out_ref, out.numpy()), True)
x = paddle.to_tensor(self.x_np)
m = paddle.nn.PReLU(num_parameters=self.x_np.shape[1])
out = m(x)
out_ref = ref_prelu_nn(self.x_np, self.x_np.shape[1], 0.25)
self.assertEqual(np.allclose(out_ref, out.numpy()), True)
x = paddle.to_tensor(self.x_np)
m = paddle.nn.PReLU(init=0.5)
out = m(x)
out_ref = ref_prelu_nn(self.x_np, 1, 0.5)
self.assertEqual(np.allclose(out_ref, out.numpy()), True)
x = paddle.to_tensor(self.x_np)
m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(name="weight"))
out = m(x)
out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
self.assertEqual(np.allclose(out_ref, out.numpy()), True)
x = paddle.to_tensor(self.x_np)
m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(0.5)))
out = m(x)
out_ref = ref_prelu_nn(self.x_np, 1, 0.5)
self.assertEqual(np.allclose(out_ref, out.numpy()), True)
paddle.enable_static()
class PReluTest(OpTest):
def setUp(self):
self.init_input_shape()
self.init_attr()
self.op_type = "prelu"
x_np = np.random.uniform(-1, 1, self.x_shape)
# Since zero point in prelu is not differentiable, avoid randomize
# zero.
x_np[np.abs(x_np) < 0.005] = 0.02
if self.attrs == {'mode': "all"}:
alpha_np = np.random.uniform(-1, -0.5, (1))
elif self.attrs == {'mode': "channel"}:
alpha_np = np.random.uniform(-1, -0.5, [1, self.x_shape[1], 1, 1])
else:
alpha_np = np.random.uniform(-1, -0.5, [1] + self.x_shape[1:])
self.inputs = {'X': x_np, 'Alpha': alpha_np}
# NOTE(zhiqu): reshape inputs['Alpha'] from [1, 100, 1, 1] to [1, 100] + [1]*len(x.shape[2:])
# since np operands could not be broadcast together with shapes (1,100,2,2,2,3) (1,100,1,1)
reshaped_alpha = self.inputs['Alpha']
if self.attrs == {'mode': "channel"}:
reshaped_alpha = np.reshape(
self.inputs['Alpha'],
[1, self.x_shape[1]] + [1] * len(self.x_shape[2:]))
out_np = np.maximum(self.inputs['X'], 0.)
out_np = out_np + np.minimum(self.inputs['X'], 0.) * reshaped_alpha
assert out_np is not self.inputs['X']
self.outputs = {'Out': out_np}
def init_input_shape(self):
self.x_shape = [2, 100, 3, 4]
def init_attr(self):
self.attrs = {'mode': "channel"}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'Alpha'], 'Out')
@skip_check_grad_ci(
reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAll(PReluTest):
def init_input_shape(self):
self.x_shape = [2, 3, 4, 5]
def init_attr(self):
self.attrs = {'mode': "all"}
class TestModeElt(PReluTest):
def init_input_shape(self):
self.x_shape = [3, 2, 5, 10]
def init_attr(self):
self.attrs = {'mode': "element"}
@skip_check_grad_ci(
reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank3(PReluTest):
def init_input_shape(self):
self.x_shape = [1, 200, 3]
def init_attr(self):
self.attrs = {'mode': "all"}
@skip_check_grad_ci(
reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank6(PReluTest):
def init_input_shape(self):
self.x_shape = [1, 2, 3, 4, 5, 6]
def init_attr(self):
self.attrs = {'mode': "all"}
class TestModeChannelRank3(PReluTest):
def init_input_shape(self):
self.x_shape = [1, 200, 3]
def init_attr(self):
self.attrs = {'mode': "channel"}
class TestModeChannelRank6(PReluTest):
def init_input_shape(self):
self.x_shape = [1, 100, 2, 2, 2, 2]
def init_attr(self):
self.attrs = {'mode': "channel"}
class TestModeElementRank3(PReluTest):
def init_input_shape(self):
self.x_shape = [3, 10, 10]
def init_attr(self):
self.attrs = {'mode': "element"}
class TestModeElementRank6(PReluTest):
def init_input_shape(self):
self.x_shape = [3, 2, 2, 4, 5, 2]
def init_attr(self):
self.attrs = {'mode': "element"}
def prelu_t(x, mode, param_attr=None, name=None):
helper = fluid.layer_helper.LayerHelper('prelu', **locals())
alpha_shape = [1, x.shape[1], 1, 1]
dtype = helper.input_dtype(input_param_name='x')
alpha = helper.create_parameter(
attr=helper.param_attr,
shape=alpha_shape,
dtype='float32',
is_bias=False,
default_initializer=fluid.initializer.ConstantInitializer(0.25))
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="prelu",
inputs={"X": x,
'Alpha': alpha},
attrs={"mode": mode},
outputs={"Out": out})
return out
# error message test if mode is not one of 'all', 'channel', 'element'
class TestModeError(unittest.TestCase):
def test_mode_error(self):
main_program = Program()
with fluid.program_guard(main_program, Program()):
x = fluid.data(name='x', shape=[2, 3, 4, 5])
try:
y = prelu_t(x, 'any')
except Exception as e:
assert (e.args[0].find('InvalidArgumentError') != -1)
if __name__ == "__main__":
unittest.main()