You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_trace_op.py

90 lines
3.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.tensor as tensor
class TestTraceOp(OpTest):
def setUp(self):
self.op_type = "trace"
self.init_config()
self.outputs = {'Out': self.target}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['Input'], 'Out')
def init_config(self):
self.case = np.random.randn(20, 6).astype('float64')
self.inputs = {'Input': self.case}
self.attrs = {'offset': 0, 'axis1': 0, 'axis2': 1}
self.target = np.trace(self.inputs['Input'])
class TestTraceOpCase1(TestTraceOp):
def init_config(self):
self.case = np.random.randn(2, 20, 2, 3).astype('float32')
self.inputs = {'Input': self.case}
self.attrs = {'offset': 1, 'axis1': 0, 'axis2': 2}
self.target = np.trace(
self.inputs['Input'],
offset=self.attrs['offset'],
axis1=self.attrs['axis1'],
axis2=self.attrs['axis2'])
class TestTraceOpCase2(TestTraceOp):
def init_config(self):
self.case = np.random.randn(2, 20, 2, 3).astype('float32')
self.inputs = {'Input': self.case}
self.attrs = {'offset': -5, 'axis1': 1, 'axis2': -1}
self.target = np.trace(
self.inputs['Input'],
offset=self.attrs['offset'],
axis1=self.attrs['axis1'],
axis2=self.attrs['axis2'])
class TestTraceAPICase(unittest.TestCase):
def test_case1(self):
case = np.random.randn(2, 20, 2, 3).astype('float32')
data1 = fluid.data(name='data1', shape=[2, 20, 2, 3], dtype='float32')
out1 = tensor.trace(data1)
out2 = tensor.trace(data1, offset=-5, axis1=1, axis2=-1)
place = core.CPUPlace()
exe = fluid.Executor(place)
results = exe.run(fluid.default_main_program(),
feed={"data1": case},
fetch_list=[out1, out2],
return_numpy=True)
target1 = np.trace(case)
target2 = np.trace(case, offset=-5, axis1=1, axis2=-1)
self.assertTrue(np.allclose(results[0], target1))
self.assertTrue(np.allclose(results[1], target2))
if __name__ == "__main__":
unittest.main()