You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_transpose_op.py

209 lines
7.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestTransposeOp(OpTest):
def setUp(self):
self.init_op_type()
self.initTestCase()
self.inputs = {'X': np.random.random(self.shape).astype("float64")}
self.attrs = {
'axis': list(self.axis),
'use_mkldnn': self.use_mkldnn,
}
self.outputs = {
'XShape': np.random.random(self.shape).astype("float64"),
'Out': self.inputs['X'].transpose(self.axis)
}
def init_op_type(self):
self.op_type = "transpose2"
self.use_mkldnn = False
def test_check_output(self):
self.check_output(no_check_set=['XShape'])
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def initTestCase(self):
self.shape = (3, 40)
self.axis = (1, 0)
class TestCase0(TestTransposeOp):
def initTestCase(self):
self.shape = (100, )
self.axis = (0, )
class TestCase1(TestTransposeOp):
def initTestCase(self):
self.shape = (3, 4, 10)
self.axis = (0, 2, 1)
class TestCase2(TestTransposeOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5)
self.axis = (0, 2, 3, 1)
class TestCase3(TestTransposeOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6)
self.axis = (4, 2, 3, 1, 0)
class TestCase4(TestTransposeOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6, 1)
self.axis = (4, 2, 3, 1, 0, 5)
class TestCase5(TestTransposeOp):
def initTestCase(self):
self.shape = (2, 16, 96)
self.axis = (0, 2, 1)
class TestCase6(TestTransposeOp):
def initTestCase(self):
self.shape = (2, 10, 12, 16)
self.axis = (3, 1, 2, 0)
class TestCase7(TestTransposeOp):
def initTestCase(self):
self.shape = (2, 10, 2, 16)
self.axis = (0, 1, 3, 2)
class TestTransposeOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
def test_x_Variable_check():
# the Input(x)'s type must be Variable
fluid.layers.transpose("not_variable", perm=[1, 0, 2])
self.assertRaises(TypeError, test_x_Variable_check)
def test_x_dtype_check():
# the Input(x)'s dtype must be one of [float16, float32, float64, int32, int64]
x1 = fluid.layers.data(
name='x1', shape=[10, 5, 3], dtype='bool')
fluid.layers.transpose(x1, perm=[1, 0, 2])
self.assertRaises(TypeError, test_x_dtype_check)
def test_perm_list_check():
# Input(perm)'s type must be list
fluid.layers.transpose(x, perm="[1, 0, 2]")
self.assertRaises(TypeError, test_perm_list_check)
def test_perm_length_and_x_dim_check():
# Input(perm) is the permutation of dimensions of Input(input)
# its length should be equal to dimensions of Input(input)
fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])
self.assertRaises(ValueError, test_perm_length_and_x_dim_check)
def test_each_elem_value_check():
# Each element in Input(perm) should be less than Input(x)'s dimension
fluid.layers.transpose(x, perm=[3, 5, 7])
self.assertRaises(ValueError, test_each_elem_value_check)
class TestTAPI(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program()):
data = fluid.data(shape=[10], dtype="float64", name="data")
data_t = paddle.t(data)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
data_np = np.random.random([10]).astype("float64")
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
expected_result = np.transpose(data_np)
self.assertEqual((result == expected_result).all(), True)
with fluid.program_guard(fluid.Program()):
data = fluid.data(shape=[10, 5], dtype="float64", name="data")
data_t = paddle.t(data)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
data_np = np.random.random([10, 5]).astype("float64")
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
expected_result = np.transpose(data_np)
self.assertEqual((result == expected_result).all(), True)
with fluid.program_guard(fluid.Program()):
data = fluid.data(shape=[1, 5], dtype="float64", name="data")
data_t = paddle.t(data)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
data_np = np.random.random([1, 5]).astype("float64")
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
expected_result = np.transpose(data_np)
self.assertEqual((result == expected_result).all(), True)
with fluid.dygraph.guard():
np_x = np.random.random([10]).astype("float64")
data = fluid.dygraph.to_variable(np_x)
z = paddle.t(data)
np_z = z.numpy()
z_expected = np.array(np.transpose(np_x))
self.assertEqual((np_z == z_expected).all(), True)
with fluid.dygraph.guard():
np_x = np.random.random([10, 5]).astype("float64")
data = fluid.dygraph.to_variable(np_x)
z = paddle.t(data)
np_z = z.numpy()
z_expected = np.array(np.transpose(np_x))
self.assertEqual((np_z == z_expected).all(), True)
with fluid.dygraph.guard():
np_x = np.random.random([1, 5]).astype("float64")
data = fluid.dygraph.to_variable(np_x)
z = paddle.t(data)
np_z = z.numpy()
z_expected = np.array(np.transpose(np_x))
self.assertEqual((np_z == z_expected).all(), True)
def test_errors(self):
with fluid.program_guard(fluid.Program()):
x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')
def test_x_dimension_check():
paddle.t(x)
self.assertRaises(ValueError, test_x_dimension_check)
if __name__ == '__main__':
unittest.main()