You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
734 lines
24 KiB
734 lines
24 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
//
|
|
// The conversion routines are Copyright (c) Fabian Giesen, 2016.
|
|
// The original license follows:
|
|
//
|
|
// Copyright (c) Fabian Giesen, 2016
|
|
// All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted.
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Standard 16-bit float type, mostly useful for GPUs. Defines a new
|
|
// type Eigen::half (inheriting from CUDA's __half struct) with
|
|
// operator overloads such that it behaves basically as an arithmetic
|
|
// type. It will be quite slow on CPUs (so it is recommended to stay
|
|
// in fp32 for CPUs, except for simple parameter conversions, I/O
|
|
// to disk and the likes), but fast on GPUs.
|
|
|
|
#ifndef EIGEN_HALF_CUDA_H
|
|
#define EIGEN_HALF_CUDA_H
|
|
|
|
#if __cplusplus > 199711L
|
|
#define EIGEN_EXPLICIT_CAST(tgt_type) explicit operator tgt_type()
|
|
#else
|
|
#define EIGEN_EXPLICIT_CAST(tgt_type) operator tgt_type()
|
|
#endif
|
|
|
|
namespace Eigen {
|
|
|
|
struct half;
|
|
|
|
namespace half_impl {
|
|
|
|
#if !defined(EIGEN_HAS_CUDA_FP16)
|
|
// Make our own __half_raw definition that is similar to CUDA's.
|
|
struct __half_raw {
|
|
EIGEN_DEVICE_FUNC __half_raw() : x(0) {}
|
|
explicit EIGEN_DEVICE_FUNC __half_raw(unsigned short raw) : x(raw) {}
|
|
unsigned short x;
|
|
};
|
|
#elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000
|
|
// In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw
|
|
typedef __half __half_raw;
|
|
#endif
|
|
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw
|
|
raw_uint16_to_half(unsigned short x);
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff);
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h);
|
|
|
|
struct half_base : public __half_raw {
|
|
EIGEN_DEVICE_FUNC half_base() {}
|
|
EIGEN_DEVICE_FUNC half_base(const half_base& h) : __half_raw(h) {}
|
|
EIGEN_DEVICE_FUNC half_base(const __half_raw& h) : __half_raw(h) {}
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && \
|
|
EIGEN_CUDACC_VER >= 90000
|
|
EIGEN_DEVICE_FUNC half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {}
|
|
#endif
|
|
};
|
|
|
|
} // namespace half_impl
|
|
|
|
// Class definition.
|
|
struct half : public half_impl::half_base {
|
|
#if !defined(EIGEN_HAS_CUDA_FP16) || \
|
|
(defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000)
|
|
typedef half_impl::__half_raw __half_raw;
|
|
#endif
|
|
|
|
EIGEN_DEVICE_FUNC half() {}
|
|
|
|
EIGEN_DEVICE_FUNC half(const __half_raw& h) : half_impl::half_base(h) {}
|
|
EIGEN_DEVICE_FUNC half(const half& h) : half_impl::half_base(h) {}
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && \
|
|
EIGEN_CUDACC_VER >= 90000
|
|
EIGEN_DEVICE_FUNC half(const __half& h) : half_impl::half_base(h) {}
|
|
#endif
|
|
|
|
explicit EIGEN_DEVICE_FUNC half(bool b)
|
|
: half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {}
|
|
template <class T>
|
|
explicit EIGEN_DEVICE_FUNC half(const T& val)
|
|
: half_impl::half_base(
|
|
half_impl::float_to_half_rtne(static_cast<float>(val))) {}
|
|
explicit EIGEN_DEVICE_FUNC half(float f)
|
|
: half_impl::half_base(half_impl::float_to_half_rtne(f)) {}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const {
|
|
// +0.0 and -0.0 become false, everything else becomes true.
|
|
return (x & 0x7fff) != 0;
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const {
|
|
return static_cast<signed char>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned char) const {
|
|
return static_cast<unsigned char>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(short) const {
|
|
return static_cast<short>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned short) const {
|
|
return static_cast<unsigned short>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(int) const {
|
|
return static_cast<int>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned int) const {
|
|
return static_cast<unsigned int>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long) const {
|
|
return static_cast<long>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long) const {
|
|
return static_cast<unsigned long>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long long) const {
|
|
return static_cast<long long>(half_impl::half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long long) const {
|
|
return static_cast<unsigned long long>(half_to_float(*this));
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const {
|
|
return half_impl::half_to_float(*this);
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(double) const {
|
|
return static_cast<double>(half_impl::half_to_float(*this));
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC half& operator=(const half& other) {
|
|
x = other.x;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
namespace half_impl {
|
|
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \
|
|
EIGEN_CUDA_ARCH >= 530
|
|
|
|
// Intrinsics for native fp16 support. Note that on current hardware,
|
|
// these are no faster than fp32 arithmetic (you need to use the half2
|
|
// versions to get the ALU speed increased), but you do save the
|
|
// conversion steps back and forth.
|
|
|
|
EIGEN_STRONG_INLINE __device__ half operator+(const half& a, const half& b) {
|
|
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000
|
|
return __hadd(::__half(a), ::__half(b));
|
|
#else
|
|
return __hadd(a, b);
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ half operator*(const half& a, const half& b) {
|
|
return __hmul(a, b);
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ half operator-(const half& a, const half& b) {
|
|
return __hsub(a, b);
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ half operator/(const half& a, const half& b) {
|
|
#if defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000
|
|
return __hdiv(a, b);
|
|
#else
|
|
float num = __half2float(a);
|
|
float denom = __half2float(b);
|
|
return __float2half(num / denom);
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ half operator-(const half& a) {
|
|
return __hneg(a);
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ half& operator+=(half& a, const half& b) {
|
|
a = a + b;
|
|
return a;
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ half& operator*=(half& a, const half& b) {
|
|
a = a * b;
|
|
return a;
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ half& operator-=(half& a, const half& b) {
|
|
a = a - b;
|
|
return a;
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ half& operator/=(half& a, const half& b) {
|
|
a = a / b;
|
|
return a;
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ bool operator==(const half& a, const half& b) {
|
|
return __heq(a, b);
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ bool operator!=(const half& a, const half& b) {
|
|
return __hne(a, b);
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ bool operator<(const half& a, const half& b) {
|
|
return __hlt(a, b);
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ bool operator<=(const half& a, const half& b) {
|
|
return __hle(a, b);
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ bool operator>(const half& a, const half& b) {
|
|
return __hgt(a, b);
|
|
}
|
|
EIGEN_STRONG_INLINE __device__ bool operator>=(const half& a, const half& b) {
|
|
return __hge(a, b);
|
|
}
|
|
|
|
#else // Emulate support for half floats
|
|
|
|
// Definitions for CPUs and older CUDA, mostly working through conversion
|
|
// to/from fp32.
|
|
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a,
|
|
const half& b) {
|
|
return half(float(a) + float(b));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a,
|
|
const half& b) {
|
|
return half(float(a) * float(b));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a,
|
|
const half& b) {
|
|
return half(float(a) - float(b));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a,
|
|
const half& b) {
|
|
return half(float(a) / float(b));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) {
|
|
half result;
|
|
result.x = a.x ^ 0x8000;
|
|
return result;
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) {
|
|
a = half(float(a) + float(b));
|
|
return a;
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) {
|
|
a = half(float(a) * float(b));
|
|
return a;
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) {
|
|
a = half(float(a) - float(b));
|
|
return a;
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) {
|
|
a = half(float(a) / float(b));
|
|
return a;
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a,
|
|
const half& b) {
|
|
return float(a) == float(b);
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a,
|
|
const half& b) {
|
|
return float(a) != float(b);
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a,
|
|
const half& b) {
|
|
return float(a) < float(b);
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a,
|
|
const half& b) {
|
|
return float(a) <= float(b);
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a,
|
|
const half& b) {
|
|
return float(a) > float(b);
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a,
|
|
const half& b) {
|
|
return float(a) >= float(b);
|
|
}
|
|
|
|
#endif // Emulate support for half floats
|
|
|
|
// Division by an index. Do it in full float precision to avoid accuracy
|
|
// issues in converting the denominator to half.
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, Index b) {
|
|
return half(static_cast<float>(a) / static_cast<float>(b));
|
|
}
|
|
|
|
// Conversion routines, including fallbacks for the host or older CUDA.
|
|
// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of
|
|
// these in hardware. If we need more performance on older/other CPUs, they are
|
|
// also possible to vectorize directly.
|
|
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw
|
|
raw_uint16_to_half(unsigned short x) {
|
|
__half_raw h;
|
|
h.x = x;
|
|
return h;
|
|
}
|
|
|
|
union FP32 {
|
|
unsigned int u;
|
|
float f;
|
|
};
|
|
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) {
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \
|
|
EIGEN_CUDA_ARCH >= 300
|
|
__half tmp_ff = __float2half(ff);
|
|
return *(__half_raw*)&tmp_ff;
|
|
|
|
#elif defined(EIGEN_HAS_FP16_C)
|
|
__half_raw h;
|
|
h.x = _cvtss_sh(ff, 0);
|
|
return h;
|
|
|
|
#else
|
|
FP32 f;
|
|
f.f = ff;
|
|
|
|
const FP32 f32infty = {255 << 23};
|
|
const FP32 f16max = {(127 + 16) << 23};
|
|
const FP32 denorm_magic = {((127 - 15) + (23 - 10) + 1) << 23};
|
|
unsigned int sign_mask = 0x80000000u;
|
|
__half_raw o;
|
|
o.x = static_cast<unsigned short>(0x0u);
|
|
|
|
unsigned int sign = f.u & sign_mask;
|
|
f.u ^= sign;
|
|
|
|
// NOTE all the integer compares in this function can be safely
|
|
// compiled into signed compares since all operands are below
|
|
// 0x80000000. Important if you want fast straight SSE2 code
|
|
// (since there's no unsigned PCMPGTD).
|
|
|
|
if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set)
|
|
o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
|
|
} else { // (De)normalized number or zero
|
|
if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero
|
|
// use a magic value to align our 10 mantissa bits at the bottom of
|
|
// the float. as long as FP addition is round-to-nearest-even this
|
|
// just works.
|
|
f.f += denorm_magic.f;
|
|
|
|
// and one integer subtract of the bias later, we have our final float!
|
|
o.x = static_cast<unsigned short>(f.u - denorm_magic.u);
|
|
} else {
|
|
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
|
|
|
|
// update exponent, rounding bias part 1
|
|
f.u += ((unsigned int)(15 - 127) << 23) + 0xfff;
|
|
// rounding bias part 2
|
|
f.u += mant_odd;
|
|
// take the bits!
|
|
o.x = static_cast<unsigned short>(f.u >> 13);
|
|
}
|
|
}
|
|
|
|
o.x |= static_cast<unsigned short>(sign >> 16);
|
|
return o;
|
|
#endif
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) {
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \
|
|
EIGEN_CUDA_ARCH >= 300
|
|
return __half2float(h);
|
|
|
|
#elif defined(EIGEN_HAS_FP16_C)
|
|
return _cvtsh_ss(h.x);
|
|
|
|
#else
|
|
const FP32 magic = {113 << 23};
|
|
const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
|
|
FP32 o;
|
|
|
|
o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits
|
|
unsigned int exp = shifted_exp & o.u; // just the exponent
|
|
o.u += (127 - 15) << 23; // exponent adjust
|
|
|
|
// handle exponent special cases
|
|
if (exp == shifted_exp) { // Inf/NaN?
|
|
o.u += (128 - 16) << 23; // extra exp adjust
|
|
} else if (exp == 0) { // Zero/Denormal?
|
|
o.u += 1 << 23; // extra exp adjust
|
|
o.f -= magic.f; // renormalize
|
|
}
|
|
|
|
o.u |= (h.x & 0x8000) << 16; // sign bit
|
|
return o.f;
|
|
#endif
|
|
}
|
|
|
|
// --- standard functions ---
|
|
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isinf)(const half& a) {
|
|
return (a.x & 0x7fff) == 0x7c00;
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isnan)(const half& a) {
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \
|
|
EIGEN_CUDA_ARCH >= 530
|
|
return __hisnan(a);
|
|
#else
|
|
return (a.x & 0x7fff) > 0x7c00;
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isfinite)(const half& a) {
|
|
return !(isinf EIGEN_NOT_A_MACRO(a)) && !(isnan EIGEN_NOT_A_MACRO(a));
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) {
|
|
half result;
|
|
result.x = a.x & 0x7FFF;
|
|
return result;
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) {
|
|
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && \
|
|
EIGEN_CUDA_ARCH >= 530
|
|
return half(hexp(a));
|
|
#else
|
|
return half(::expf(float(a)));
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) {
|
|
return half(numext::expm1(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) {
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDACC_VER >= 80000 && \
|
|
defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530
|
|
return half(::hlog(a));
|
|
#else
|
|
return half(::logf(float(a)));
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) {
|
|
return half(numext::log1p(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) {
|
|
return half(::log10f(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) {
|
|
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && \
|
|
EIGEN_CUDA_ARCH >= 530
|
|
return half(hsqrt(a));
|
|
#else
|
|
return half(::sqrtf(float(a)));
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) {
|
|
return half(::powf(float(a), float(b)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) {
|
|
return half(::sinf(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) {
|
|
return half(::cosf(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) {
|
|
return half(::tanf(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) {
|
|
return half(::tanhf(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) {
|
|
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && \
|
|
EIGEN_CUDA_ARCH >= 300
|
|
return half(hfloor(a));
|
|
#else
|
|
return half(::floorf(float(a)));
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) {
|
|
#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && \
|
|
EIGEN_CUDA_ARCH >= 300
|
|
return half(hceil(a));
|
|
#else
|
|
return half(::ceilf(float(a)));
|
|
#endif
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(min)(const half& a, const half& b) {
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \
|
|
EIGEN_CUDA_ARCH >= 530
|
|
return __hlt(b, a) ? b : a;
|
|
#else
|
|
const float f1 = static_cast<float>(a);
|
|
const float f2 = static_cast<float>(b);
|
|
return f2 < f1 ? b : a;
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(max)(const half& a, const half& b) {
|
|
#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \
|
|
EIGEN_CUDA_ARCH >= 530
|
|
return __hlt(a, b) ? b : a;
|
|
#else
|
|
const float f1 = static_cast<float>(a);
|
|
const float f2 = static_cast<float>(b);
|
|
return f1 < f2 ? b : a;
|
|
#endif
|
|
}
|
|
|
|
EIGEN_ALWAYS_INLINE std::ostream& operator<<(std::ostream& os, const half& v) {
|
|
os << static_cast<float>(v);
|
|
return os;
|
|
}
|
|
|
|
} // end namespace half_impl
|
|
|
|
// import Eigen::half_impl::half into Eigen namespace
|
|
// using half_impl::half;
|
|
|
|
namespace internal {
|
|
|
|
template <>
|
|
struct random_default_impl<half, false, false> {
|
|
static inline half run(const half& x, const half& y) {
|
|
return x + (y - x) * half(float(std::rand()) / float(RAND_MAX));
|
|
}
|
|
static inline half run() { return run(half(-1.f), half(1.f)); }
|
|
};
|
|
|
|
template <>
|
|
struct is_arithmetic<half> {
|
|
enum { value = true };
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
namespace std {
|
|
template <>
|
|
struct numeric_limits<Eigen::half> {
|
|
static const bool is_specialized = true;
|
|
static const bool is_signed = true;
|
|
static const bool is_integer = false;
|
|
static const bool is_exact = false;
|
|
static const bool has_infinity = true;
|
|
static const bool has_quiet_NaN = true;
|
|
static const bool has_signaling_NaN = true;
|
|
static const float_denorm_style has_denorm = denorm_present;
|
|
static const bool has_denorm_loss = false;
|
|
static const std::float_round_style round_style = std::round_to_nearest;
|
|
static const bool is_iec559 = false;
|
|
static const bool is_bounded = false;
|
|
static const bool is_modulo = false;
|
|
static const int digits = 11;
|
|
static const int digits10 = 3; // according to
|
|
// http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
|
|
static const int max_digits10 = 5; // according to
|
|
// http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html
|
|
static const int radix = 2;
|
|
static const int min_exponent = -13;
|
|
static const int min_exponent10 = -4;
|
|
static const int max_exponent = 16;
|
|
static const int max_exponent10 = 4;
|
|
static const bool traps = true;
|
|
static const bool tinyness_before = false;
|
|
|
|
static Eigen::half(min)() {
|
|
return Eigen::half_impl::raw_uint16_to_half(0x400);
|
|
}
|
|
static Eigen::half lowest() {
|
|
return Eigen::half_impl::raw_uint16_to_half(0xfbff);
|
|
}
|
|
static Eigen::half(max)() {
|
|
return Eigen::half_impl::raw_uint16_to_half(0x7bff);
|
|
}
|
|
static Eigen::half epsilon() {
|
|
return Eigen::half_impl::raw_uint16_to_half(0x0800);
|
|
}
|
|
static Eigen::half round_error() { return Eigen::half(0.5); }
|
|
static Eigen::half infinity() {
|
|
return Eigen::half_impl::raw_uint16_to_half(0x7c00);
|
|
}
|
|
static Eigen::half quiet_NaN() {
|
|
return Eigen::half_impl::raw_uint16_to_half(0x7e00);
|
|
}
|
|
static Eigen::half signaling_NaN() {
|
|
return Eigen::half_impl::raw_uint16_to_half(0x7e00);
|
|
}
|
|
static Eigen::half denorm_min() {
|
|
return Eigen::half_impl::raw_uint16_to_half(0x1);
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace Eigen {
|
|
|
|
template <>
|
|
struct NumTraits<Eigen::half> : GenericNumTraits<Eigen::half> {
|
|
enum {
|
|
IsSigned = true,
|
|
IsInteger = false,
|
|
IsComplex = false,
|
|
RequireInitialization = false
|
|
};
|
|
|
|
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half epsilon() {
|
|
return half_impl::raw_uint16_to_half(0x0800);
|
|
}
|
|
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half dummy_precision() {
|
|
return Eigen::half(1e-2f);
|
|
}
|
|
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half highest() {
|
|
return half_impl::raw_uint16_to_half(0x7bff);
|
|
}
|
|
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half lowest() {
|
|
return half_impl::raw_uint16_to_half(0xfbff);
|
|
}
|
|
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half infinity() {
|
|
return half_impl::raw_uint16_to_half(0x7c00);
|
|
}
|
|
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() {
|
|
return half_impl::raw_uint16_to_half(0x7c01);
|
|
}
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
// C-like standard mathematical functions and trancendentals.
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half fabsh(const Eigen::half& a) {
|
|
Eigen::half result;
|
|
result.x = a.x & 0x7FFF;
|
|
return result;
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) {
|
|
return Eigen::half(::expf(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) {
|
|
#if EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && \
|
|
EIGEN_CUDA_ARCH >= 530
|
|
return Eigen::half(::hlog(a));
|
|
#else
|
|
return Eigen::half(::logf(float(a)));
|
|
#endif
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrth(const Eigen::half& a) {
|
|
return Eigen::half(::sqrtf(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half powh(const Eigen::half& a,
|
|
const Eigen::half& b) {
|
|
return Eigen::half(::powf(float(a), float(b)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floorh(const Eigen::half& a) {
|
|
return Eigen::half(::floorf(float(a)));
|
|
}
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceilh(const Eigen::half& a) {
|
|
return Eigen::half(::ceilf(float(a)));
|
|
}
|
|
|
|
namespace std {
|
|
|
|
#if __cplusplus > 199711L
|
|
template <>
|
|
struct hash<Eigen::half> {
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(
|
|
const Eigen::half& a) const {
|
|
return static_cast<std::size_t>(a.x);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
} // end namespace std
|
|
|
|
// Add the missing shfl_xor intrinsic
|
|
#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300
|
|
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var,
|
|
int laneMask,
|
|
int width = warpSize) {
|
|
#if EIGEN_CUDACC_VER < 90000
|
|
return static_cast<Eigen::half>(
|
|
__shfl_xor(static_cast<float>(var), laneMask, width));
|
|
#else
|
|
return static_cast<Eigen::half>(
|
|
__shfl_xor_sync(0xFFFFFFFF, static_cast<float>(var), laneMask, width));
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// ldg() has an overload for __half_raw, but we also need one for Eigen::half.
|
|
#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350
|
|
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(
|
|
const Eigen::half* ptr) {
|
|
return Eigen::half_impl::raw_uint16_to_half(
|
|
__ldg(reinterpret_cast<const unsigned short*>(ptr)));
|
|
}
|
|
#endif
|
|
|
|
#if defined(EIGEN_CUDA_ARCH)
|
|
namespace Eigen {
|
|
namespace numext {
|
|
|
|
template <>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) {
|
|
return (half_impl::isnan)(h);
|
|
}
|
|
|
|
template <>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(const Eigen::half& h) {
|
|
return (half_impl::isinf)(h);
|
|
}
|
|
|
|
template <>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) {
|
|
return (half_impl::isfinite)(h);
|
|
}
|
|
|
|
} // namespace Eigen
|
|
} // namespace numext
|
|
#endif
|
|
|
|
#endif // EIGEN_HALF_CUDA_H
|