You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
228 lines
6.8 KiB
228 lines
6.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.utils.download import get_weights_path_from_url
|
|
|
|
__all__ = ['MobileNetV2', 'mobilenet_v2']
|
|
|
|
model_urls = {
|
|
'mobilenetv2_1.0':
|
|
('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
|
|
'0340af0a901346c8d46f4529882fb63d')
|
|
}
|
|
|
|
|
|
def _make_divisible(v, divisor, min_value=None):
|
|
if min_value is None:
|
|
min_value = divisor
|
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
|
|
|
if new_v < 0.9 * v:
|
|
new_v += divisor
|
|
return new_v
|
|
|
|
|
|
class ConvBNReLU(nn.Sequential):
|
|
def __init__(self,
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=3,
|
|
stride=1,
|
|
groups=1,
|
|
norm_layer=nn.BatchNorm2D):
|
|
padding = (kernel_size - 1) // 2
|
|
|
|
super(ConvBNReLU, self).__init__(
|
|
nn.Conv2D(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
groups=groups,
|
|
bias_attr=False),
|
|
norm_layer(out_planes),
|
|
nn.ReLU6())
|
|
|
|
|
|
class InvertedResidual(nn.Layer):
|
|
def __init__(self,
|
|
inp,
|
|
oup,
|
|
stride,
|
|
expand_ratio,
|
|
norm_layer=nn.BatchNorm2D):
|
|
super(InvertedResidual, self).__init__()
|
|
self.stride = stride
|
|
assert stride in [1, 2]
|
|
|
|
hidden_dim = int(round(inp * expand_ratio))
|
|
self.use_res_connect = self.stride == 1 and inp == oup
|
|
|
|
layers = []
|
|
if expand_ratio != 1:
|
|
layers.append(
|
|
ConvBNReLU(
|
|
inp, hidden_dim, kernel_size=1, norm_layer=norm_layer))
|
|
layers.extend([
|
|
ConvBNReLU(
|
|
hidden_dim,
|
|
hidden_dim,
|
|
stride=stride,
|
|
groups=hidden_dim,
|
|
norm_layer=norm_layer),
|
|
nn.Conv2D(
|
|
hidden_dim, oup, 1, 1, 0, bias_attr=False),
|
|
norm_layer(oup),
|
|
])
|
|
self.conv = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
if self.use_res_connect:
|
|
return x + self.conv(x)
|
|
else:
|
|
return self.conv(x)
|
|
|
|
|
|
class MobileNetV2(nn.Layer):
|
|
def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
|
|
"""MobileNetV2 model from
|
|
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
|
|
|
|
Args:
|
|
scale (float): scale of channels in each layer. Default: 1.0.
|
|
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
|
|
will not be defined. Default: 1000.
|
|
with_pool (bool): use pool before the last fc layer or not. Default: True.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
from paddle.vision.models import MobileNetV2
|
|
|
|
model = MobileNetV2()
|
|
"""
|
|
super(MobileNetV2, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.with_pool = with_pool
|
|
input_channel = 32
|
|
last_channel = 1280
|
|
|
|
block = InvertedResidual
|
|
round_nearest = 8
|
|
norm_layer = nn.BatchNorm2D
|
|
inverted_residual_setting = [
|
|
[1, 16, 1, 1],
|
|
[6, 24, 2, 2],
|
|
[6, 32, 3, 2],
|
|
[6, 64, 4, 2],
|
|
[6, 96, 3, 1],
|
|
[6, 160, 3, 2],
|
|
[6, 320, 1, 1],
|
|
]
|
|
|
|
input_channel = _make_divisible(input_channel * scale, round_nearest)
|
|
self.last_channel = _make_divisible(last_channel * max(1.0, scale),
|
|
round_nearest)
|
|
features = [
|
|
ConvBNReLU(
|
|
3, input_channel, stride=2, norm_layer=norm_layer)
|
|
]
|
|
|
|
for t, c, n, s in inverted_residual_setting:
|
|
output_channel = _make_divisible(c * scale, round_nearest)
|
|
for i in range(n):
|
|
stride = s if i == 0 else 1
|
|
features.append(
|
|
block(
|
|
input_channel,
|
|
output_channel,
|
|
stride,
|
|
expand_ratio=t,
|
|
norm_layer=norm_layer))
|
|
input_channel = output_channel
|
|
|
|
features.append(
|
|
ConvBNReLU(
|
|
input_channel,
|
|
self.last_channel,
|
|
kernel_size=1,
|
|
norm_layer=norm_layer))
|
|
|
|
self.features = nn.Sequential(*features)
|
|
|
|
if with_pool:
|
|
self.pool2d_avg = nn.AdaptiveAvgPool2D(1)
|
|
|
|
if self.num_classes > 0:
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes))
|
|
|
|
def forward(self, x):
|
|
x = self.features(x)
|
|
|
|
if self.with_pool:
|
|
x = self.pool2d_avg(x)
|
|
|
|
if self.num_classes > 0:
|
|
x = paddle.flatten(x, 1)
|
|
x = self.classifier(x)
|
|
return x
|
|
|
|
|
|
def _mobilenet(arch, pretrained=False, **kwargs):
|
|
model = MobileNetV2(**kwargs)
|
|
if pretrained:
|
|
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
|
|
arch)
|
|
weight_path = get_weights_path_from_url(model_urls[arch][0],
|
|
model_urls[arch][1])
|
|
|
|
param = paddle.load(weight_path)
|
|
model.load_dict(param)
|
|
|
|
return model
|
|
|
|
|
|
def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
|
|
"""MobileNetV2
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
|
|
scale: (float): scale of channels in each layer. Default: 1.0.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
from paddle.vision.models import mobilenet_v2
|
|
|
|
# build model
|
|
model = mobilenet_v2()
|
|
|
|
# build model and load imagenet pretrained weight
|
|
# model = mobilenet_v2(pretrained=True)
|
|
|
|
# build mobilenet v2 with scale=0.5
|
|
model = mobilenet_v2(scale=0.5)
|
|
"""
|
|
model = _mobilenet(
|
|
'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs)
|
|
return model
|