You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/vision/models/mobilenetv2.py

228 lines
6.8 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.utils.download import get_weights_path_from_url
__all__ = ['MobileNetV2', 'mobilenet_v2']
model_urls = {
'mobilenetv2_1.0':
('https://paddle-hapi.bj.bcebos.com/models/mobilenet_v2_x1.0.pdparams',
'0340af0a901346c8d46f4529882fb63d')
}
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self,
in_planes,
out_planes,
kernel_size=3,
stride=1,
groups=1,
norm_layer=nn.BatchNorm2D):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2D(
in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias_attr=False),
norm_layer(out_planes),
nn.ReLU6())
class InvertedResidual(nn.Layer):
def __init__(self,
inp,
oup,
stride,
expand_ratio,
norm_layer=nn.BatchNorm2D):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
layers.append(
ConvBNReLU(
inp, hidden_dim, kernel_size=1, norm_layer=norm_layer))
layers.extend([
ConvBNReLU(
hidden_dim,
hidden_dim,
stride=stride,
groups=hidden_dim,
norm_layer=norm_layer),
nn.Conv2D(
hidden_dim, oup, 1, 1, 0, bias_attr=False),
norm_layer(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Layer):
def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
"""MobileNetV2 model from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
from paddle.vision.models import MobileNetV2
model = MobileNetV2()
"""
super(MobileNetV2, self).__init__()
self.num_classes = num_classes
self.with_pool = with_pool
input_channel = 32
last_channel = 1280
block = InvertedResidual
round_nearest = 8
norm_layer = nn.BatchNorm2D
inverted_residual_setting = [
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
input_channel = _make_divisible(input_channel * scale, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, scale),
round_nearest)
features = [
ConvBNReLU(
3, input_channel, stride=2, norm_layer=norm_layer)
]
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * scale, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(
block(
input_channel,
output_channel,
stride,
expand_ratio=t,
norm_layer=norm_layer))
input_channel = output_channel
features.append(
ConvBNReLU(
input_channel,
self.last_channel,
kernel_size=1,
norm_layer=norm_layer))
self.features = nn.Sequential(*features)
if with_pool:
self.pool2d_avg = nn.AdaptiveAvgPool2D(1)
if self.num_classes > 0:
self.classifier = nn.Sequential(
nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes))
def forward(self, x):
x = self.features(x)
if self.with_pool:
x = self.pool2d_avg(x)
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.classifier(x)
return x
def _mobilenet(arch, pretrained=False, **kwargs):
model = MobileNetV2(**kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
param = paddle.load(weight_path)
model.load_dict(param)
return model
def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
"""MobileNetV2
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
scale: (float): scale of channels in each layer. Default: 1.0.
Examples:
.. code-block:: python
from paddle.vision.models import mobilenet_v2
# build model
model = mobilenet_v2()
# build model and load imagenet pretrained weight
# model = mobilenet_v2(pretrained=True)
# build mobilenet v2 with scale=0.5
model = mobilenet_v2(scale=0.5)
"""
model = _mobilenet(
'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs)
return model