You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
7.6 KiB
226 lines
7.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <Python.h>
|
|
#include <paddle/framework/op_registry.h>
|
|
#include <paddle/framework/scope.h>
|
|
#include <pybind11/numpy.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
#include <fstream>
|
|
#include <vector>
|
|
|
|
namespace py = pybind11;
|
|
namespace pd = paddle::framework;
|
|
|
|
USE_OP(add_two);
|
|
|
|
struct PlaceDebugString : public boost::static_visitor<std::string> {
|
|
std::string operator()(const paddle::platform::GPUPlace& place) const {
|
|
return "GPU(" + std::to_string(place.device) + ")";
|
|
}
|
|
|
|
std::string operator()(const paddle::platform::CPUPlace& place) const {
|
|
return "CPU";
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct TensorToPyBuffer {
|
|
pd::Tensor& self_;
|
|
explicit TensorToPyBuffer(pd::Tensor& self) : self_(self) {}
|
|
|
|
bool CanCast() const { return std::type_index(typeid(T)) == self_.type(); }
|
|
|
|
py::buffer_info Cast() const {
|
|
auto dim_vec = pd::vectorize(self_.dims());
|
|
std::vector<size_t> dims_outside;
|
|
std::vector<size_t> strides;
|
|
dims_outside.resize(dim_vec.size());
|
|
strides.resize(dim_vec.size());
|
|
|
|
size_t prod = 1;
|
|
for (size_t i = dim_vec.size(); i != 0; --i) {
|
|
dims_outside[i - 1] = (size_t)dim_vec[i - 1];
|
|
strides[i - 1] = sizeof(float) * prod;
|
|
prod *= dims_outside[i - 1];
|
|
}
|
|
|
|
return py::buffer_info(self_.mutable_data<T>(self_.place()),
|
|
sizeof(T),
|
|
py::format_descriptor<T>::format(),
|
|
(size_t)pd::arity(self_.dims()),
|
|
dims_outside,
|
|
strides);
|
|
}
|
|
};
|
|
|
|
template <bool less, size_t I, typename... ARGS>
|
|
struct CastToPyBufferImpl;
|
|
|
|
template <size_t I, typename... ARGS>
|
|
struct CastToPyBufferImpl<false, I, ARGS...> {
|
|
py::buffer_info operator()(pd::Tensor& tensor) {
|
|
PADDLE_THROW("This type of tensor cannot be expose to Python");
|
|
return py::buffer_info();
|
|
}
|
|
};
|
|
|
|
template <size_t I, typename... ARGS>
|
|
struct CastToPyBufferImpl<true, I, ARGS...> {
|
|
using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
|
|
py::buffer_info operator()(pd::Tensor& tensor) {
|
|
TensorToPyBuffer<CUR_TYPE> cast_object(tensor);
|
|
if (cast_object.CanCast()) {
|
|
return cast_object.Cast();
|
|
} else {
|
|
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
|
|
return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
std::ostream& operator<<(std::ostream& os, const std::vector<T>& vec) {
|
|
for (size_t i = 0; i < vec.size(); ++i) {
|
|
os << vec[i];
|
|
if (i + 1 != vec.size()) {
|
|
os << ", ";
|
|
}
|
|
}
|
|
return os;
|
|
}
|
|
|
|
py::buffer_info CastToPyBuffer(pd::Tensor& tensor) {
|
|
auto buffer_info = CastToPyBufferImpl<true, 0, float, int>()(tensor);
|
|
return buffer_info;
|
|
}
|
|
|
|
template <typename T>
|
|
void PyTensorSet(
|
|
pd::Tensor& self,
|
|
py::array_t<T, py::array::c_style | py::array::forcecast> array) {
|
|
std::vector<int> dims;
|
|
dims.reserve(array.ndim());
|
|
for (size_t i = 0; i < array.ndim(); ++i) {
|
|
dims.push_back((int)array.shape()[i]);
|
|
}
|
|
|
|
self.set_dims(pd::make_ddim(dims));
|
|
auto* dst = self.mutable_data<T>(paddle::platform::CPUPlace());
|
|
std::memcpy(dst, array.data(), sizeof(T) * array.size());
|
|
}
|
|
|
|
PYBIND11_PLUGIN(core) {
|
|
py::module m("core", "C++ core of Paddle Paddle");
|
|
|
|
py::class_<paddle::platform::Place>(
|
|
m, "Place", R"DOC(Device Place Class.)DOC")
|
|
.def("__str__",
|
|
[](const paddle::platform::Place& self) {
|
|
return boost::apply_visitor(PlaceDebugString(), self);
|
|
})
|
|
.def("is_gpu",
|
|
[](const paddle::platform::Place& self) {
|
|
return paddle::platform::is_gpu_place(self);
|
|
})
|
|
.def("is_cpu", [](const paddle::platform::Place& self) {
|
|
return paddle::platform::is_cpu_place(self);
|
|
});
|
|
|
|
py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
|
|
.def("get_place", &pd::Tensor::place)
|
|
.def_buffer([](pd::Tensor& self) -> py::buffer_info {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(self.place()),
|
|
"Only CPU tensor can cast to numpy array");
|
|
return CastToPyBuffer(self);
|
|
})
|
|
.def("get_dims",
|
|
[](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
|
|
.def("set_dims",
|
|
[](pd::Tensor& self, const std::vector<int>& dim) {
|
|
self.set_dims(pd::make_ddim(dim));
|
|
})
|
|
.def("alloc_float",
|
|
[](pd::Tensor& self) {
|
|
self.mutable_data<float>(paddle::platform::CPUPlace());
|
|
})
|
|
.def("alloc_int",
|
|
[](pd::Tensor& self) {
|
|
self.mutable_data<int>(paddle::platform::CPUPlace());
|
|
})
|
|
.def("set", PyTensorSet<float>)
|
|
.def("set", PyTensorSet<int>);
|
|
|
|
py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.
|
|
|
|
All parameter, weight, gradient are variables in Paddle.
|
|
)DOC")
|
|
.def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
|
|
.def("set_int",
|
|
[](pd::Variable& var, int val) -> void {
|
|
*var.GetMutable<int>() = val;
|
|
})
|
|
.def("get_int",
|
|
[](const pd::Variable& var) -> int { return var.Get<int>(); })
|
|
.def("get_tensor",
|
|
[](pd::Variable& self) -> pd::Tensor* {
|
|
return self.GetMutable<pd::Tensor>();
|
|
},
|
|
py::return_value_policy::reference);
|
|
|
|
py::class_<pd::Scope, std::shared_ptr<pd::Scope>>(m, "Scope")
|
|
.def(py::init<const std::shared_ptr<pd::Scope>&>())
|
|
.def("get_var",
|
|
&pd::Scope::GetVariable,
|
|
py::return_value_policy::reference)
|
|
.def("create_var",
|
|
&pd::Scope::CreateVariable,
|
|
py::return_value_policy::reference);
|
|
|
|
//! @note: Be careful! PyBind will return std::string as an unicode, not
|
|
//! Python str. If you want a str object, you should cast them in Python.
|
|
m.def("get_all_op_protos", []() -> std::vector<std::string> {
|
|
auto& protos = pd::OpRegistry::protos();
|
|
std::vector<std::string> ret_values;
|
|
for (auto it = protos.begin(); it != protos.end(); ++it) {
|
|
PADDLE_ENFORCE(it->second.IsInitialized(),
|
|
"OpProto must all be initialized");
|
|
ret_values.emplace_back();
|
|
PADDLE_ENFORCE(it->second.SerializeToString(&ret_values.back()),
|
|
"Serialize OpProto Error. This could be a bug of Paddle.");
|
|
}
|
|
return ret_values;
|
|
});
|
|
m.def_submodule(
|
|
"var_names",
|
|
"The module will return special predefined variable name in Paddle")
|
|
.def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
|
|
.def("temp", pd::OperatorBase::TMP_VAR_NAME);
|
|
|
|
py::class_<pd::OperatorBase, pd::OperatorPtr>(m, "Operator")
|
|
.def("__str__", &pd::OperatorBase::DebugString)
|
|
.def_static("create", [](const std::string& protobin) {
|
|
pd::OpDesc desc;
|
|
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
|
|
"Cannot parse user input to OpDesc");
|
|
PADDLE_ENFORCE(desc.IsInitialized(),
|
|
"User OpDesc is not initialized, reason %s",
|
|
desc.InitializationErrorString());
|
|
return pd::OpRegistry::CreateOp(desc);
|
|
});
|
|
|
|
return m.ptr();
|
|
}
|