You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
263 lines
9.0 KiB
263 lines
9.0 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/data_set.h"
|
|
#include <random>
|
|
#include "google/protobuf/io/zero_copy_stream_impl.h"
|
|
#include "google/protobuf/message.h"
|
|
#include "google/protobuf/text_format.h"
|
|
#include "paddle/fluid/framework/data_feed_factory.h"
|
|
#include "paddle/fluid/platform/timer.h"
|
|
#include "paddle/fluid/framework/io/fs.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
// constructor
|
|
template <typename T>
|
|
DatasetImpl<T>::DatasetImpl() {
|
|
thread_num_ = 1;
|
|
trainer_num_ = 1;
|
|
file_idx_ = 0;
|
|
}
|
|
|
|
// set filelist, file_idx_ will reset to zero.
|
|
template <typename T>
|
|
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
|
|
VLOG(3) << "filelist size: " << filelist.size();
|
|
filelist_ = filelist;
|
|
file_idx_ = 0;
|
|
}
|
|
|
|
// set expect thread num. actually it may change
|
|
template <typename T>
|
|
void DatasetImpl<T>::SetThreadNum(int thread_num) {
|
|
VLOG(3) << "SetThreadNum thread_num=" << thread_num;
|
|
thread_num_ = thread_num;
|
|
}
|
|
|
|
// if you run distributed, and want to do global shuffle,
|
|
// set this before global shuffle.
|
|
// be sure you call CreateReaders before SetTrainerNum
|
|
template <typename T>
|
|
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
|
|
trainer_num_ = trainer_num;
|
|
// should inform reader of trainer_num directly
|
|
for (auto reader : readers_) {
|
|
reader->SetTrainerNum(trainer_num);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
|
|
const std::string& fs_ugi) {
|
|
std::string cmd = std::string("hadoop fs");
|
|
cmd += " -D fs.default.name=" + fs_name;
|
|
cmd += " -D hadoop.job.ugi=" + fs_ugi;
|
|
paddle::framework::hdfs_set_command(cmd);
|
|
}
|
|
|
|
template <typename T>
|
|
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
|
|
google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
|
|
&data_feed_desc_);
|
|
}
|
|
|
|
// readers_.size() may not be equal to thread_num_,
|
|
// it changes when filelist_.size() < thread_num_
|
|
template <typename T>
|
|
std::vector<std::shared_ptr<paddle::framework::DataFeed>>&
|
|
DatasetImpl<T>::GetReaders() {
|
|
return readers_;
|
|
}
|
|
|
|
// if sent message between workers, should first call this function
|
|
template <typename T>
|
|
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
|
|
auto fleet_ptr = FleetWrapper::GetInstance();
|
|
VLOG(3) << "RegisterClientToClientMsgHandler";
|
|
fleet_ptr->RegisterClientToClientMsgHandler(
|
|
0, [this](int msg_type, int client_id, const std::string& msg) -> int {
|
|
return this->ReceiveFromClient(msg_type, client_id, msg);
|
|
});
|
|
VLOG(3) << "RegisterClientToClientMsgHandler done";
|
|
}
|
|
|
|
// load data into memory, Dataset hold this memory,
|
|
// which will later be fed into readers' channel
|
|
template <typename T>
|
|
void DatasetImpl<T>::LoadIntoMemory() {
|
|
VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
|
|
platform::Timer timeline;
|
|
timeline.Start();
|
|
if (readers_.size() == 0) {
|
|
CreateReaders();
|
|
}
|
|
std::vector<std::thread> load_threads;
|
|
for (int64_t i = 0; i < thread_num_; ++i) {
|
|
load_threads.push_back(std::thread(
|
|
&paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
|
|
}
|
|
for (std::thread& t : load_threads) {
|
|
t.join();
|
|
}
|
|
timeline.Pause();
|
|
VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
|
|
<< ", memory data size=" << memory_data_.size()
|
|
<< ", cost time=" << timeline.ElapsedSec() << " seconds";
|
|
}
|
|
|
|
// release memory data
|
|
template <typename T>
|
|
void DatasetImpl<T>::ReleaseMemory() {
|
|
VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
|
|
std::vector<T>().swap(memory_data_);
|
|
VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
|
|
}
|
|
|
|
// do local shuffle
|
|
template <typename T>
|
|
void DatasetImpl<T>::LocalShuffle() {
|
|
VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
|
|
platform::Timer timeline;
|
|
timeline.Start();
|
|
if (readers_.size() == 0) {
|
|
CreateReaders();
|
|
}
|
|
// if it is not InMemory, memory_data_ is empty
|
|
std::random_shuffle(memory_data_.begin(), memory_data_.end());
|
|
|
|
std::vector<std::thread> local_shuffle_threads;
|
|
for (int64_t i = 0; i < thread_num_; ++i) {
|
|
local_shuffle_threads.push_back(std::thread(
|
|
&paddle::framework::DataFeed::LocalShuffle, readers_[i].get()));
|
|
}
|
|
for (std::thread& t : local_shuffle_threads) {
|
|
t.join();
|
|
}
|
|
std::vector<T>().swap(memory_data_);
|
|
timeline.Pause();
|
|
VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
|
|
<< timeline.ElapsedSec() << " seconds";
|
|
}
|
|
|
|
template <typename T>
|
|
void DatasetImpl<T>::GlobalShuffle() {
|
|
VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
|
|
platform::Timer timeline;
|
|
timeline.Start();
|
|
if (readers_.size() == 0) {
|
|
CreateReaders();
|
|
}
|
|
// if it is not InMemory, memory_data_ is empty
|
|
std::random_shuffle(memory_data_.begin(), memory_data_.end());
|
|
VLOG(3) << "start global shuffle threads";
|
|
std::vector<std::thread> global_shuffle_threads;
|
|
for (int i = 0; i < thread_num_; ++i) {
|
|
global_shuffle_threads.push_back(std::thread(
|
|
&paddle::framework::DataFeed::GlobalShuffle, readers_[i].get()));
|
|
}
|
|
for (std::thread& t : global_shuffle_threads) {
|
|
t.join();
|
|
}
|
|
std::vector<T>().swap(memory_data_);
|
|
timeline.Pause();
|
|
VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
|
|
<< timeline.ElapsedSec() << " seconds";
|
|
}
|
|
|
|
template <typename T>
|
|
void DatasetImpl<T>::CreateReaders() {
|
|
VLOG(3) << "Calling CreateReaders()";
|
|
CHECK(thread_num_ > 0) << "thread_num should > 0";
|
|
int file_cnt = filelist_.size();
|
|
int memory_data_size = memory_data_.size();
|
|
if (memory_data_size != 0 && thread_num_ > memory_data_size) {
|
|
VLOG(3) << "Dataset thread num = " << thread_num_
|
|
<< ", memory data size = " << memory_data_size
|
|
<< ". Changing Dataset thread num = " << memory_data_size;
|
|
thread_num_ = memory_data_size;
|
|
} else if (file_cnt != 0 && thread_num_ > file_cnt) {
|
|
VLOG(3) << "Dataset thread num = " << thread_num_
|
|
<< ", file num = " << file_cnt
|
|
<< ". Changing Dataset thread num = " << file_cnt;
|
|
thread_num_ = file_cnt;
|
|
}
|
|
VLOG(3) << "thread_num in Readers: " << thread_num_;
|
|
VLOG(3) << "readers size: " << readers_.size();
|
|
VLOG(3) << "Filelist size in readers: " << filelist_.size();
|
|
if (readers_.size() != 0) {
|
|
return;
|
|
}
|
|
VLOG(3) << "data feed class name: " << data_feed_desc_.name();
|
|
for (int i = 0; i < thread_num_; ++i) {
|
|
readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
|
|
readers_.back()->Init(data_feed_desc_);
|
|
readers_.back()->SetMemoryData(&memory_data_);
|
|
readers_.back()->SetMemoryDataMutex(&mutex_for_update_memory_data_);
|
|
readers_.back()->SetThreadId(i);
|
|
readers_.back()->SetThreadNum(thread_num_);
|
|
readers_.back()->SetTrainerNum(trainer_num_);
|
|
readers_.back()->SetFileListMutex(&mutex_for_pick_file_);
|
|
readers_.back()->SetFileListIndex(&file_idx_);
|
|
readers_.back()->SetFileList(filelist_);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void DatasetImpl<T>::DestroyReaders() {
|
|
VLOG(3) << "Calling DestroyReaders()";
|
|
// clear memory_data_ before fill it
|
|
// because if LoadIntoMemory but no Shuffle,
|
|
// memory_data_ has empty data which has been std::move to channel
|
|
if (memory_data_.size() != 0) {
|
|
std::vector<T>().swap(memory_data_);
|
|
}
|
|
std::vector<std::thread> fill_threads;
|
|
for (int i = 0; i < thread_num_; ++i) {
|
|
fill_threads.push_back(
|
|
std::thread(&paddle::framework::DataFeed::FillChannelToMemoryData,
|
|
readers_[i].get()));
|
|
}
|
|
for (std::thread& t : fill_threads) {
|
|
t.join();
|
|
}
|
|
std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
|
|
VLOG(3) << "readers size: " << readers_.size();
|
|
// if memory_data_ is empty, which means it's not InMemory mode,
|
|
// so the next epoch should read all data again
|
|
if (memory_data_.size() == 0) {
|
|
file_idx_ = 0;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
|
|
const std::string& msg) {
|
|
VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
|
|
<< ", client_id=" << client_id << ", msg length="
|
|
<< msg.length();
|
|
auto fleet_ptr = FleetWrapper::GetInstance();
|
|
int64_t index = fleet_ptr->LocalRandomEngine()() % thread_num_;
|
|
VLOG(3) << "ramdom index=" << index;
|
|
readers_[index]->PutInsToChannel(msg);
|
|
return 0;
|
|
}
|
|
|
|
// explicit instantiation
|
|
template class DatasetImpl<std::vector<MultiSlotType>>;
|
|
|
|
} // end namespace framework
|
|
} // end namespace paddle
|