You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
7.4 KiB
200 lines
7.4 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/scatter_nd_add_op.h"
|
|
#include <memory>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/ddim.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ScatterNdAddOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) of ScatterNdAddOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Index"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Index) of ScatterNdAddOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Updates"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Updates) of ScatterNdAddOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(Out) of ScatterNdAddOp should not be null."));
|
|
|
|
auto ref_dims = ctx->GetInputDim("X");
|
|
auto ref_dims_size = ref_dims.size();
|
|
auto index_dims = ctx->GetInputDim("Index");
|
|
auto index_dims_size = index_dims.size();
|
|
auto updates_dims = ctx->GetInputDim("Updates");
|
|
auto updates_dims_size = updates_dims.size();
|
|
|
|
PADDLE_ENFORCE_LE(
|
|
index_dims[index_dims_size - 1], ref_dims_size,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Index).shape[-1] should be no greater than Input(X).rank"));
|
|
PADDLE_ENFORCE_GE(index_dims_size, 2UL,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of Input(Index) should be greater than 1"));
|
|
|
|
// update.shape = index.shape[:-1] + output.shape[index.shape[-1]:]
|
|
std::vector<int64_t> r_updates_dims;
|
|
for (int64_t i = 0; i < index_dims_size - 1; ++i) {
|
|
r_updates_dims.emplace_back(index_dims[i]);
|
|
}
|
|
for (int64_t i = index_dims[index_dims_size - 1]; i < ref_dims_size; ++i) {
|
|
r_updates_dims.emplace_back(ref_dims[i]);
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
r_updates_dims.size(), updates_dims_size,
|
|
platform::errors::InvalidArgument("Updates has wrong shape"));
|
|
|
|
for (int64_t i = 0; i < updates_dims_size; ++i) {
|
|
PADDLE_ENFORCE_EQ(
|
|
r_updates_dims[i], updates_dims[i],
|
|
platform::errors::InvalidArgument("Updates has wrong shape"));
|
|
}
|
|
ctx->SetOutputDim("Out", ref_dims);
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Updates"),
|
|
platform::errors::InvalidArgument(
|
|
"Ref and Updates must have same type"));
|
|
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ScatterNdAddGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
if (ctx->HasOutput(framework::GradVarName("Updates"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Updates"),
|
|
ctx->GetInputDim("Updates"));
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"),
|
|
ctx->GetInputDim(framework::GradVarName("Out")));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ScatterNdAddOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "The source input of scatter_nd_add op");
|
|
AddInput("Index",
|
|
"The index input of scatter_nd_add op where X will be updated");
|
|
AddInput("Updates", "The updated value of scatter_nd_add op");
|
|
AddOutput("Out", "The output of scatter_nd_add op");
|
|
AddComment(R"DOC(
|
|
Scatter_nd_add Operator.
|
|
|
|
Output is obtained by applying sparse addition to a single value or slice in a Variable.
|
|
|
|
Given:
|
|
* Case 1:
|
|
ref = [0, 1, 2, 3, 4, 5]
|
|
index = [[1], [2], [3], [1]]
|
|
updates = [9, 10, 11, 12]
|
|
|
|
we get:
|
|
|
|
output = [0, 22, 12, 14, 4, 5]
|
|
|
|
* Case 2:
|
|
ref = [[65, 17], [-14, -25]]
|
|
index = [[], []]
|
|
updates = [[[-1, -2], [1, 2]],
|
|
[[3, 4], [-3, -4]]]
|
|
ref.shape = (2, 2)
|
|
index.shape = (2, 0)
|
|
updates.shape = (2, 2, 2)
|
|
|
|
we get:
|
|
|
|
output = [[67, 19], [-16, -27]]
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ScatterNdAddGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("scatter_nd_add_grad");
|
|
op->SetInput("Index", this->Input("Index"));
|
|
op->SetInput("Updates", this->Input("Updates"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Updates"),
|
|
this->InputGrad("Updates"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ScatterNdAddGradNoNeedBufferVarsInference,
|
|
"Updates");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(scatter_nd_add, ops::ScatterNdAddOp, ops::ScatterNdAddOpMaker,
|
|
ops::ScatterNdAddGradMaker<paddle::framework::OpDesc>,
|
|
ops::ScatterNdAddGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(scatter_nd_add_grad, ops::ScatterNdAddGradOp,
|
|
ops::ScatterNdAddGradNoNeedBufferVarsInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(scatter_nd_add, ops::ScatterNdAddOpKernel<float>,
|
|
ops::ScatterNdAddOpKernel<double>,
|
|
ops::ScatterNdAddOpKernel<int64_t>,
|
|
ops::ScatterNdAddOpKernel<int>,
|
|
ops::ScatterNdAddOpKernel<uint8_t>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(scatter_nd_add_grad,
|
|
ops::ScatterNdAddGradientOpKernel<float>,
|
|
ops::ScatterNdAddGradientOpKernel<double>,
|
|
ops::ScatterNdAddGradientOpKernel<int64_t>,
|
|
ops::ScatterNdAddGradientOpKernel<int>,
|
|
ops::ScatterNdAddGradientOpKernel<uint8_t>);
|