You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
3.4 KiB
133 lines
3.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
#!/usr/bin/env python
|
|
from paddle.trainer_config_helpers import *
|
|
|
|
height = 224
|
|
width = 224
|
|
num_class = 1000
|
|
batch_size = get_config_arg('batch_size', int, 64)
|
|
layer_num = get_config_arg('layer_num', int, 19)
|
|
is_infer = get_config_arg("is_infer", bool, False)
|
|
num_samples = get_config_arg('num_samples', int, 2560)
|
|
|
|
args = {
|
|
'height': height,
|
|
'width': width,
|
|
'color': True,
|
|
'num_class': num_class,
|
|
'is_infer': is_infer,
|
|
'num_samples': num_samples
|
|
}
|
|
define_py_data_sources2(
|
|
"train.list" if not is_infer else None,
|
|
"test.list" if is_infer else None,
|
|
module="provider",
|
|
obj="process",
|
|
args=args)
|
|
|
|
settings(
|
|
batch_size=batch_size,
|
|
learning_rate=0.001 / batch_size,
|
|
learning_method=MomentumOptimizer(0.9),
|
|
regularization=L2Regularization(0.0005 * batch_size))
|
|
|
|
img = data_layer(name='image', size=height * width * 3)
|
|
|
|
|
|
def vgg_network(vgg_num=3):
|
|
tmp = img_conv_group(
|
|
input=img,
|
|
num_channels=3,
|
|
conv_padding=1,
|
|
conv_num_filter=[64, 64],
|
|
conv_filter_size=3,
|
|
conv_act=ReluActivation(),
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
pool_type=MaxPooling())
|
|
|
|
tmp = img_conv_group(
|
|
input=tmp,
|
|
conv_num_filter=[128, 128],
|
|
conv_padding=1,
|
|
conv_filter_size=3,
|
|
conv_act=ReluActivation(),
|
|
pool_stride=2,
|
|
pool_type=MaxPooling(),
|
|
pool_size=2)
|
|
|
|
channels = []
|
|
for i in range(vgg_num):
|
|
channels.append(256)
|
|
tmp = img_conv_group(
|
|
input=tmp,
|
|
conv_num_filter=channels,
|
|
conv_padding=1,
|
|
conv_filter_size=3,
|
|
conv_act=ReluActivation(),
|
|
pool_stride=2,
|
|
pool_type=MaxPooling(),
|
|
pool_size=2)
|
|
channels = []
|
|
for i in range(vgg_num):
|
|
channels.append(512)
|
|
tmp = img_conv_group(
|
|
input=tmp,
|
|
conv_num_filter=channels,
|
|
conv_padding=1,
|
|
conv_filter_size=3,
|
|
conv_act=ReluActivation(),
|
|
pool_stride=2,
|
|
pool_type=MaxPooling(),
|
|
pool_size=2)
|
|
tmp = img_conv_group(
|
|
input=tmp,
|
|
conv_num_filter=channels,
|
|
conv_padding=1,
|
|
conv_filter_size=3,
|
|
conv_act=ReluActivation(),
|
|
pool_stride=2,
|
|
pool_type=MaxPooling(),
|
|
pool_size=2)
|
|
|
|
tmp = fc_layer(
|
|
input=tmp,
|
|
size=4096,
|
|
act=ReluActivation(),
|
|
layer_attr=ExtraAttr(drop_rate=0.5))
|
|
|
|
tmp = fc_layer(
|
|
input=tmp,
|
|
size=4096,
|
|
act=ReluActivation(),
|
|
layer_attr=ExtraAttr(drop_rate=0.5))
|
|
|
|
return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation())
|
|
|
|
|
|
if layer_num == 16:
|
|
vgg = vgg_network(3)
|
|
elif layer_num == 19:
|
|
vgg = vgg_network(4)
|
|
else:
|
|
print("Wrong layer number.")
|
|
|
|
if is_infer:
|
|
outputs(vgg)
|
|
else:
|
|
lab = data_layer('label', num_class)
|
|
loss = cross_entropy(input=vgg, label=lab)
|
|
outputs(loss)
|