You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
6.0 KiB
162 lines
6.0 KiB
import collections
|
|
|
|
import py_paddle.swig_paddle as api
|
|
|
|
from data_feeder import DataFeeder
|
|
from topology import Topology
|
|
from . import event as v2_event
|
|
from . import optimizer as v2_optimizer
|
|
from . import parameters as v2_parameters
|
|
|
|
__all__ = ['SGD']
|
|
"""
|
|
Trainer package
|
|
TODO(yuyang18): Complete comments.
|
|
"""
|
|
|
|
|
|
def default_event_handler(event):
|
|
"""
|
|
Default event handler. It will print some log and save mode.
|
|
|
|
TODO(yuyang18): Complete it!
|
|
:param event:
|
|
:return:
|
|
"""
|
|
pass
|
|
|
|
|
|
class SGD(object):
|
|
"""
|
|
Simple SGD Trainer.
|
|
TODO(yuyang18): Complete comments
|
|
|
|
:param update_equation: The optimizer object.
|
|
:type update_equation: paddle.v2.optimizer.Optimizer
|
|
:param cost: Target cost that neural network should be optimized.
|
|
:type cost: paddle.v2.config_base.Layer
|
|
:param parameters: The parameters dictionary.
|
|
:type parameters: paddle.v2.parameters.Parameters
|
|
:param extra_layers: Some layers in the neural network graph are not
|
|
in the path of cost layer.
|
|
:type extra_layers: paddle.v2.config_base.Layer
|
|
"""
|
|
|
|
def __init__(self, cost, parameters, update_equation, extra_layers=None):
|
|
|
|
if not isinstance(parameters, v2_parameters.Parameters):
|
|
raise TypeError('parameters should be parameters')
|
|
|
|
if not isinstance(update_equation, v2_optimizer.Optimizer):
|
|
raise TypeError("update equation parameter must be "
|
|
"paddle.v2.optimizer.Optimizer")
|
|
topology = Topology(cost, extra_layers=extra_layers)
|
|
self.__optimizer__ = update_equation
|
|
self.__topology__ = topology
|
|
self.__parameters__ = parameters
|
|
self.__topology_in_proto__ = topology.proto()
|
|
|
|
# In local mode, disable sparse_remote_update.
|
|
for param in self.__topology_in_proto__.parameters:
|
|
if param.sparse_remote_update:
|
|
param.sparse_remote_update = False
|
|
|
|
self.__data_types__ = topology.data_type()
|
|
gm = api.GradientMachine.createFromConfigProto(
|
|
self.__topology_in_proto__, api.CREATE_MODE_NORMAL,
|
|
self.__optimizer__.enable_types())
|
|
assert isinstance(gm, api.GradientMachine)
|
|
self.__gradient_machine__ = gm
|
|
self.__gradient_machine__.randParameters()
|
|
parameters.append_gradient_machine(gm)
|
|
|
|
def train(self, reader, num_passes=1, event_handler=None, feeding=None):
|
|
"""
|
|
Training method. Will train num_passes of input data.
|
|
|
|
:param reader:
|
|
:param num_passes: The total train passes.
|
|
:param event_handler: Event handler. A method will be invoked when event
|
|
occurred.
|
|
:type event_handler: (BaseEvent) => None
|
|
:param feeding: Feeding is a map of neural network input name and array
|
|
index that reader returns.
|
|
:type feeding: dict
|
|
:return:
|
|
"""
|
|
if event_handler is None:
|
|
event_handler = default_event_handler
|
|
__check_train_args__(**locals())
|
|
|
|
updater = self.__optimizer__.create_local_updater()
|
|
updater.init(self.__gradient_machine__)
|
|
|
|
self.__gradient_machine__.start()
|
|
batch_evaluator = self.__gradient_machine__.makeEvaluator()
|
|
assert isinstance(batch_evaluator, api.Evaluator)
|
|
pass_evaluator = self.__gradient_machine__.makeEvaluator()
|
|
assert isinstance(pass_evaluator, api.Evaluator)
|
|
out_args = api.Arguments.createArguments(0)
|
|
feeder = DataFeeder(self.__data_types__, feeding)
|
|
for pass_id in xrange(num_passes):
|
|
event_handler(v2_event.BeginPass(pass_id))
|
|
pass_evaluator.start()
|
|
updater.startPass()
|
|
for batch_id, data_batch in enumerate(reader()):
|
|
batch_evaluator.start()
|
|
event_handler(
|
|
v2_event.BeginIteration(
|
|
pass_id=pass_id, batch_id=batch_id))
|
|
pass_type = updater.startBatch(len(data_batch))
|
|
self.__gradient_machine__.forwardBackward(
|
|
feeder(data_batch), out_args, pass_type)
|
|
self.__gradient_machine__.eval(pass_evaluator)
|
|
self.__gradient_machine__.eval(batch_evaluator)
|
|
for each_param in self.__gradient_machine__.getNonStaticParameters(
|
|
):
|
|
updater.update(each_param)
|
|
cost_sum = out_args.sum()
|
|
cost = cost_sum / len(data_batch)
|
|
updater.finishBatch(cost)
|
|
batch_evaluator.finish()
|
|
event_handler(
|
|
v2_event.EndIteration(
|
|
pass_id=pass_id,
|
|
batch_id=batch_id,
|
|
cost=cost,
|
|
evaluator=batch_evaluator))
|
|
|
|
updater.finishPass()
|
|
pass_evaluator.finish()
|
|
event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
|
|
self.__gradient_machine__.finish()
|
|
|
|
def test(self, reader, feeding=None):
|
|
feeder = DataFeeder(self.__data_types__, feeding)
|
|
evaluator = self.__gradient_machine__.makeEvaluator()
|
|
out_args = api.Arguments.createArguments(0)
|
|
evaluator.start()
|
|
total_cost = 0
|
|
num_samples = 0.0
|
|
for data_batch in reader():
|
|
num_samples += len(data_batch)
|
|
self.__gradient_machine__.forward(
|
|
feeder(data_batch), out_args, api.PASS_TEST)
|
|
total_cost += out_args.sum()
|
|
self.__gradient_machine__.eval(evaluator)
|
|
|
|
evaluator.finish()
|
|
return v2_event.TestResult(
|
|
evaluator=evaluator, cost=total_cost / num_samples)
|
|
|
|
|
|
def __check_train_args__(reader, event_handler, **kwargs):
|
|
"""
|
|
Check train function's argument types
|
|
"""
|
|
if not callable(reader) or not isinstance(reader(), collections.Iterator):
|
|
raise TypeError('train_data_reader should be a function, '
|
|
'which can return a iterator')
|
|
if not callable(event_handler):
|
|
raise TypeError('event handler should be a function')
|