You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
3.2 KiB
99 lines
3.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/selected_rows.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
class SelectedRowsTester : public ::testing::Test {
|
|
public:
|
|
void SetUp() override {
|
|
std::vector<int64_t> rows{0, 4, 7};
|
|
int64_t height = 10;
|
|
int64_t row_numel = 100;
|
|
selected_rows_.reset(new SelectedRows(rows, height));
|
|
|
|
Tensor* value = selected_rows_->mutable_value();
|
|
value->mutable_data<float>(
|
|
make_ddim({static_cast<int64_t>(rows.size()), row_numel}), place_);
|
|
}
|
|
|
|
protected:
|
|
platform::CPUPlace place_;
|
|
std::unique_ptr<SelectedRows> selected_rows_{nullptr};
|
|
};
|
|
|
|
TEST_F(SelectedRowsTester, height) { ASSERT_EQ(selected_rows_->height(), 10); }
|
|
|
|
TEST_F(SelectedRowsTester, dims) {
|
|
ASSERT_EQ(selected_rows_->value().dims(), make_ddim({3, 100}));
|
|
}
|
|
|
|
TEST_F(SelectedRowsTester, complete_dims) {
|
|
ASSERT_EQ(selected_rows_->GetCompleteDims(), make_ddim({10, 100}));
|
|
}
|
|
|
|
TEST_F(SelectedRowsTester, SerializeAndDeseralize) {
|
|
SelectedRows dst_tensor;
|
|
platform::CPUDeviceContext cpu_ctx(place_);
|
|
std::ostringstream oss;
|
|
|
|
SerializeToStream(oss, *selected_rows_, cpu_ctx);
|
|
|
|
std::istringstream iss(oss.str());
|
|
DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
|
|
|
|
ASSERT_EQ(selected_rows_->rows(), dst_tensor.rows());
|
|
ASSERT_EQ(selected_rows_->height(), dst_tensor.height());
|
|
ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims());
|
|
ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims());
|
|
}
|
|
|
|
TEST_F(SelectedRowsTester, SparseTable) {
|
|
platform::CPUPlace cpu;
|
|
SelectedRows table;
|
|
// initialize a sparse table
|
|
table.mutable_value()->Resize(framework::make_ddim({1, 100}));
|
|
table.mutable_value()->mutable_data<float>(cpu);
|
|
table.mutable_rows()->push_back(1);
|
|
|
|
int64_t key = 10000;
|
|
int64_t non_key = 999;
|
|
framework::Tensor value;
|
|
value.Resize(framework::make_ddim({1, 100}));
|
|
auto ptr = value.mutable_data<float>(cpu);
|
|
ptr[0] = static_cast<float>(10);
|
|
|
|
ASSERT_EQ(table.rows().size(), static_cast<size_t>(1));
|
|
ASSERT_EQ(table.HasKey(key), false);
|
|
|
|
table.Set(key, value);
|
|
|
|
ASSERT_EQ(table.rows().size(), static_cast<size_t>(2));
|
|
ASSERT_EQ(table.HasKey(key), true);
|
|
// check re-allocate
|
|
ASSERT_EQ(table.value().dims()[0], static_cast<int64_t>(4));
|
|
|
|
framework::Tensor get_value;
|
|
get_value.mutable_data<float>(framework::make_ddim({2, 100}), cpu);
|
|
std::vector<int64_t> keys({non_key, key});
|
|
auto non_key_pairs = table.Get(keys, &get_value);
|
|
|
|
ASSERT_EQ(get_value.data<float>()[100], static_cast<float>(10));
|
|
ASSERT_EQ(non_key_pairs.size(), static_cast<size_t>(1));
|
|
ASSERT_EQ(non_key_pairs[0].first, non_key);
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|