You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
84 lines
2.9 KiB
84 lines
2.9 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <glog/logging.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "gflags/gflags.h"
|
|
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
|
|
#include "paddle/fluid/inference/tests/test_helper.h"
|
|
|
|
DEFINE_string(dirname, "", "Directory of the inference model.");
|
|
|
|
namespace paddle {
|
|
|
|
PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
|
|
PaddleTensor pt;
|
|
pt.data.data = t->data<void>();
|
|
|
|
if (t->type() == typeid(int64_t)) {
|
|
pt.data.length = t->numel() * sizeof(int64_t);
|
|
pt.dtype = PaddleDType::INT64;
|
|
} else if (t->type() == typeid(float)) {
|
|
pt.data.length = t->numel() * sizeof(float);
|
|
pt.dtype = PaddleDType::FLOAT32;
|
|
} else {
|
|
LOG(FATAL) << "unsupported type.";
|
|
}
|
|
pt.shape = framework::vectorize2int(t->dims());
|
|
return pt;
|
|
}
|
|
|
|
TEST(paddle_inference_api_impl, word2vec) {
|
|
VisConfig config;
|
|
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
|
|
LOG(INFO) << "dirname " << config.model_dir;
|
|
config.fraction_of_gpu_memory = 0.15;
|
|
config.device = 0;
|
|
config.share_variables = true;
|
|
|
|
std::unique_ptr<PaddlePredictorImpl> predictor =
|
|
CreatePaddlePredictorImpl(config);
|
|
|
|
framework::LoDTensor first_word, second_word, third_word, fourth_word;
|
|
framework::LoD lod{{0, 1}};
|
|
int64_t dict_size = 2073; // The size of dictionary
|
|
|
|
SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
|
SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
|
SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
|
SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
|
|
|
std::vector<PaddleTensor> cpu_feeds;
|
|
cpu_feeds.push_back(LodTensorToPaddleTensor(&first_word));
|
|
cpu_feeds.push_back(LodTensorToPaddleTensor(&second_word));
|
|
cpu_feeds.push_back(LodTensorToPaddleTensor(&third_word));
|
|
cpu_feeds.push_back(LodTensorToPaddleTensor(&fourth_word));
|
|
|
|
std::vector<PaddleTensor> outputs;
|
|
ASSERT_TRUE(predictor->Run(cpu_feeds, &outputs));
|
|
ASSERT_EQ(outputs.size(), 1);
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
size_t len = outputs[i].data.length;
|
|
float* data = static_cast<float*>(outputs[i].data.data);
|
|
for (int j = 0; j < len / sizeof(float); ++j) {
|
|
ASSERT_LT(data[j], 1.0);
|
|
ASSERT_GT(data[j], -1.0);
|
|
}
|
|
free(outputs[i].data.data);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|