You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
6.4 KiB
176 lines
6.4 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "paddle/fluid/framework/tensor_util.h"
|
|
#include "paddle/fluid/inference/lite/tensor_utils.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace lite {
|
|
namespace utils {
|
|
|
|
using paddle::lite_api::TargetType;
|
|
using paddle::lite_api::PrecisionType;
|
|
using paddle::lite_api::DataLayoutType;
|
|
|
|
TEST(LiteEngineOp, GetNativePlace) {
|
|
::testing::FLAGS_gtest_death_test_style = "threadsafe";
|
|
platform::Place GetNativePlace(const TargetType& type, int id = 0);
|
|
EXPECT_TRUE(platform::is_cpu_place(GetNativePlace(TargetType::kHost)));
|
|
EXPECT_TRUE(platform::is_gpu_place(GetNativePlace(TargetType::kCUDA)));
|
|
EXPECT_ANY_THROW(GetNativePlace(TargetType::kUnk));
|
|
}
|
|
|
|
TEST(LiteEngineOp, GetLiteTargetType) {
|
|
TargetType GetLiteTargetType(const platform::Place& place);
|
|
ASSERT_EQ(GetLiteTargetType(platform::CPUPlace()), TargetType::kHost);
|
|
ASSERT_EQ(GetLiteTargetType(platform::CUDAPlace(0)), TargetType::kCUDA);
|
|
}
|
|
|
|
TEST(LiteEngineOp, GetLitePrecisionType) {
|
|
::testing::FLAGS_gtest_death_test_style = "threadsafe";
|
|
PrecisionType GetLitePrecisionType(framework::proto::VarType::Type type);
|
|
ASSERT_EQ(GetLitePrecisionType(framework::proto::VarType_Type_FP32),
|
|
PrecisionType::kFloat);
|
|
ASSERT_EQ(GetLitePrecisionType(framework::proto::VarType_Type_INT8),
|
|
PrecisionType::kInt8);
|
|
ASSERT_EQ(GetLitePrecisionType(framework::proto::VarType_Type_INT32),
|
|
PrecisionType::kInt32);
|
|
EXPECT_ANY_THROW(
|
|
GetLitePrecisionType(framework::proto::VarType_Type_SELECTED_ROWS));
|
|
}
|
|
|
|
TEST(LiteEngineOp, GetNativePrecisionType) {
|
|
::testing::FLAGS_gtest_death_test_style = "threadsafe";
|
|
framework::proto::VarType::Type GetNativePrecisionType(
|
|
const PrecisionType& type);
|
|
ASSERT_EQ(GetNativePrecisionType(PrecisionType::kFloat),
|
|
framework::proto::VarType_Type_FP32);
|
|
ASSERT_EQ(GetNativePrecisionType(PrecisionType::kInt8),
|
|
framework::proto::VarType_Type_INT8);
|
|
ASSERT_EQ(GetNativePrecisionType(PrecisionType::kInt32),
|
|
framework::proto::VarType_Type_INT32);
|
|
EXPECT_ANY_THROW(GetNativePrecisionType(PrecisionType::kUnk));
|
|
}
|
|
|
|
TEST(LiteEngineOp, GetNativeLayoutType) {
|
|
::testing::FLAGS_gtest_death_test_style = "threadsafe";
|
|
framework::DataLayout GetNativeLayoutType(const DataLayoutType& type);
|
|
ASSERT_EQ(GetNativeLayoutType(DataLayoutType::kNCHW),
|
|
framework::DataLayout::kNCHW);
|
|
EXPECT_ANY_THROW(GetNativeLayoutType(DataLayoutType::kNHWC));
|
|
}
|
|
|
|
template <typename T>
|
|
void test_lite_tensor_data_ptr(PrecisionType precision_type) {
|
|
void* GetLiteTensorDataPtr(paddle::lite_api::Tensor * src,
|
|
PrecisionType precision_type,
|
|
TargetType target_type);
|
|
const int count = 4;
|
|
paddle::lite::Tensor lite_tensor;
|
|
lite_tensor.Resize({count});
|
|
auto* lite_tensor_data = lite_tensor.mutable_data<T>();
|
|
for (size_t i = 0; i < count; ++i) {
|
|
lite_tensor_data[i] = i;
|
|
}
|
|
paddle::lite_api::Tensor lite_api_tensor(&lite_tensor);
|
|
T* data = static_cast<T*>(GetLiteTensorDataPtr(
|
|
&lite_api_tensor, precision_type, TargetType::kHost));
|
|
for (size_t i = 0; i < count; ++i) {
|
|
CHECK_EQ(data[i], static_cast<T>(i)) << "the i-th num is not correct.";
|
|
}
|
|
}
|
|
|
|
TEST(LiteEngineOp, GetLiteTensorDataPtr) {
|
|
test_lite_tensor_data_ptr<int64_t>(PrecisionType::kInt64);
|
|
test_lite_tensor_data_ptr<int32_t>(PrecisionType::kInt32);
|
|
test_lite_tensor_data_ptr<int8_t>(PrecisionType::kInt8);
|
|
EXPECT_ANY_THROW(test_lite_tensor_data_ptr<double>(PrecisionType::kUnk));
|
|
}
|
|
|
|
void test_tensor_copy(const platform::DeviceContext& ctx) {
|
|
// Create LoDTensor.
|
|
std::vector<float> vector({1, 2, 3, 4});
|
|
framework::LoDTensor lod_tensor;
|
|
framework::TensorFromVector(vector, ctx, &lod_tensor);
|
|
framework::LoD lod({{0, 2, 4}});
|
|
lod_tensor.Resize({4, 1});
|
|
lod_tensor.set_lod(lod);
|
|
// Create lite::Tensor and copy.
|
|
paddle::lite::Tensor lite_tensor;
|
|
paddle::lite_api::Tensor lite_api_tensor(&lite_tensor);
|
|
TensorCopyAsync(&lite_api_tensor, lod_tensor, ctx);
|
|
// Copy to LoDTensor.
|
|
framework::LoDTensor lod_tensor_n;
|
|
TensorCopyAsync(&lod_tensor_n, lite_api_tensor, ctx);
|
|
#ifdef PADDLE_WITH_CUDA
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
platform::GpuStreamSync(
|
|
static_cast<const platform::CUDADeviceContext&>(ctx).stream());
|
|
}
|
|
#endif
|
|
std::vector<float> result;
|
|
TensorToVector(lod_tensor_n, ctx, &result);
|
|
ASSERT_EQ(result, vector);
|
|
ASSERT_EQ(lod_tensor_n.lod(), lod_tensor.lod());
|
|
}
|
|
|
|
void test_tensor_share(const platform::DeviceContext& ctx) {
|
|
std::vector<float> vector({1, 2, 3, 4});
|
|
framework::LoDTensor lod_tensor;
|
|
framework::TensorFromVector(vector, ctx, &lod_tensor);
|
|
framework::LoD lod({{0, 2, 4}});
|
|
lod_tensor.Resize({4, 1});
|
|
lod_tensor.set_lod(lod);
|
|
// Create lite::Tensor and share.
|
|
paddle::lite::Tensor lite_tensor;
|
|
paddle::lite_api::Tensor lite_api_tensor(&lite_tensor);
|
|
TensorDataShare(&lite_api_tensor, &lod_tensor);
|
|
// Copy to LoDTensor.
|
|
framework::LoDTensor lod_tensor_n;
|
|
TensorCopyAsync(&lod_tensor_n, lite_api_tensor, ctx);
|
|
std::vector<float> result;
|
|
TensorToVector(lod_tensor_n, ctx, &result);
|
|
ASSERT_EQ(result, vector);
|
|
ASSERT_EQ(lod_tensor_n.lod(), lod_tensor.lod());
|
|
}
|
|
|
|
TEST(LiteEngineOp, TensorCopyAsync) {
|
|
auto* ctx_cpu =
|
|
platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
|
|
test_tensor_copy(*ctx_cpu);
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto* ctx_gpu =
|
|
platform::DeviceContextPool::Instance().Get(platform::CUDAPlace(0));
|
|
test_tensor_copy(*ctx_gpu);
|
|
#endif
|
|
}
|
|
|
|
TEST(LiteEngineOp, TensorShare) {
|
|
auto* ctx_cpu =
|
|
platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
|
|
test_tensor_share(*ctx_cpu);
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto* ctx_gpu =
|
|
platform::DeviceContextPool::Instance().Get(platform::CUDAPlace(0));
|
|
test_tensor_share(*ctx_gpu);
|
|
#endif
|
|
}
|
|
|
|
} // namespace utils
|
|
} // namespace lite
|
|
} // namespace inference
|
|
} // namespace paddle
|