You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
315 lines
12 KiB
315 lines
12 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/op_version_registry.h"
|
|
#include "paddle/fluid/operators/detection/bbox_util.h"
|
|
#include "paddle/fluid/operators/detection/nms_util.h"
|
|
#include "paddle/fluid/operators/gather.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
class GenerateProposalsV2Op : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Scores"), true,
|
|
platform::errors::NotFound("Input(Scores) shouldn't be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("BboxDeltas"), true,
|
|
platform::errors::NotFound("Input(BboxDeltas) shouldn't be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("ImShape"), true,
|
|
platform::errors::NotFound("Input(ImShape) shouldn't be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Anchors"), true,
|
|
platform::errors::NotFound("Input(Anchors) shouldn't be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Variances"), true,
|
|
platform::errors::NotFound("Input(Variances) shouldn't be null."));
|
|
|
|
ctx->SetOutputDim("RpnRois", {-1, 4});
|
|
ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
|
|
if (!ctx->IsRuntime()) {
|
|
ctx->SetLoDLevel("RpnRois", std::max(ctx->GetLoDLevel("Scores"), 1));
|
|
ctx->SetLoDLevel("RpnRoiProbs", std::max(ctx->GetLoDLevel("Scores"), 1));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Anchors"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class GenerateProposalsV2Kernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto *scores = context.Input<Tensor>("Scores");
|
|
auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
|
|
auto *im_shape = context.Input<Tensor>("ImShape");
|
|
auto anchors = GET_DATA_SAFELY(context.Input<Tensor>("Anchors"), "Input",
|
|
"Anchors", "GenerateProposals");
|
|
auto variances = GET_DATA_SAFELY(context.Input<Tensor>("Variances"),
|
|
"Input", "Variances", "GenerateProposals");
|
|
|
|
auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
|
|
auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");
|
|
|
|
int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
|
|
int post_nms_top_n = context.Attr<int>("post_nms_topN");
|
|
float nms_thresh = context.Attr<float>("nms_thresh");
|
|
float min_size = context.Attr<float>("min_size");
|
|
float eta = context.Attr<float>("eta");
|
|
|
|
auto &dev_ctx =
|
|
context.template device_context<platform::CPUDeviceContext>();
|
|
|
|
auto &scores_dim = scores->dims();
|
|
int64_t num = scores_dim[0];
|
|
int64_t c_score = scores_dim[1];
|
|
int64_t h_score = scores_dim[2];
|
|
int64_t w_score = scores_dim[3];
|
|
|
|
auto &bbox_dim = bbox_deltas->dims();
|
|
int64_t c_bbox = bbox_dim[1];
|
|
int64_t h_bbox = bbox_dim[2];
|
|
int64_t w_bbox = bbox_dim[3];
|
|
|
|
rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
|
|
context.GetPlace());
|
|
rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
|
|
|
|
Tensor bbox_deltas_swap, scores_swap;
|
|
bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
|
|
dev_ctx.GetPlace());
|
|
scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
|
|
dev_ctx.GetPlace());
|
|
|
|
math::Transpose<platform::CPUDeviceContext, T, 4> trans;
|
|
std::vector<int> axis = {0, 2, 3, 1};
|
|
trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
|
|
trans(dev_ctx, *scores, &scores_swap, axis);
|
|
|
|
framework::LoD lod;
|
|
lod.resize(1);
|
|
auto &lod0 = lod[0];
|
|
lod0.push_back(0);
|
|
anchors.Resize({anchors.numel() / 4, 4});
|
|
variances.Resize({variances.numel() / 4, 4});
|
|
std::vector<int> tmp_num;
|
|
|
|
int64_t num_proposals = 0;
|
|
for (int64_t i = 0; i < num; ++i) {
|
|
Tensor im_shape_slice = im_shape->Slice(i, i + 1);
|
|
Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
|
|
Tensor scores_slice = scores_swap.Slice(i, i + 1);
|
|
|
|
bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
|
|
scores_slice.Resize({h_score * w_score * c_score, 1});
|
|
|
|
std::pair<Tensor, Tensor> tensor_pair =
|
|
ProposalForOneImage(dev_ctx, im_shape_slice, anchors, variances,
|
|
bbox_deltas_slice, scores_slice, pre_nms_top_n,
|
|
post_nms_top_n, nms_thresh, min_size, eta);
|
|
Tensor &proposals = tensor_pair.first;
|
|
Tensor &scores = tensor_pair.second;
|
|
|
|
AppendProposals(rpn_rois, 4 * num_proposals, proposals);
|
|
AppendProposals(rpn_roi_probs, num_proposals, scores);
|
|
num_proposals += proposals.dims()[0];
|
|
lod0.push_back(num_proposals);
|
|
tmp_num.push_back(proposals.dims()[0]);
|
|
}
|
|
if (context.HasOutput("RpnRoisNum")) {
|
|
auto *rpn_rois_num = context.Output<Tensor>("RpnRoisNum");
|
|
rpn_rois_num->mutable_data<int>({num}, context.GetPlace());
|
|
int *num_data = rpn_rois_num->data<int>();
|
|
for (int i = 0; i < num; i++) {
|
|
num_data[i] = tmp_num[i];
|
|
}
|
|
rpn_rois_num->Resize({num});
|
|
}
|
|
rpn_rois->set_lod(lod);
|
|
rpn_roi_probs->set_lod(lod);
|
|
rpn_rois->Resize({num_proposals, 4});
|
|
rpn_roi_probs->Resize({num_proposals, 1});
|
|
}
|
|
|
|
std::pair<Tensor, Tensor> ProposalForOneImage(
|
|
const platform::CPUDeviceContext &ctx, const Tensor &im_shape_slice,
|
|
const Tensor &anchors, const Tensor &variances,
|
|
const Tensor &bbox_deltas_slice, // [M, 4]
|
|
const Tensor &scores_slice, // [N, 1]
|
|
int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
|
|
float eta) const {
|
|
auto *scores_data = scores_slice.data<T>();
|
|
|
|
// Sort index
|
|
Tensor index_t;
|
|
index_t.Resize({scores_slice.numel()});
|
|
int *index = index_t.mutable_data<int>(ctx.GetPlace());
|
|
for (int i = 0; i < scores_slice.numel(); ++i) {
|
|
index[i] = i;
|
|
}
|
|
auto compare = [scores_data](const int64_t &i, const int64_t &j) {
|
|
return scores_data[i] > scores_data[j];
|
|
};
|
|
|
|
if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
|
|
std::sort(index, index + scores_slice.numel(), compare);
|
|
} else {
|
|
std::nth_element(index, index + pre_nms_top_n,
|
|
index + scores_slice.numel(), compare);
|
|
index_t.Resize({pre_nms_top_n});
|
|
}
|
|
|
|
Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
|
|
scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
|
|
bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
|
|
CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
|
|
CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
|
|
CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
|
|
CPUGather<T>(ctx, variances, index_t, &var_sel);
|
|
|
|
Tensor proposals;
|
|
proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);
|
|
|
|
ClipTiledBoxes<T>(ctx, im_shape_slice, proposals, &proposals, false);
|
|
|
|
Tensor keep;
|
|
FilterBoxes<T>(ctx, &proposals, min_size, im_shape_slice, false, &keep);
|
|
// Handle the case when there is no keep index left
|
|
if (keep.numel() == 0) {
|
|
math::SetConstant<platform::CPUDeviceContext, T> set_zero;
|
|
bbox_sel.mutable_data<T>({1, 4}, ctx.GetPlace());
|
|
set_zero(ctx, &bbox_sel, static_cast<T>(0));
|
|
Tensor scores_filter;
|
|
scores_filter.mutable_data<T>({1, 1}, ctx.GetPlace());
|
|
set_zero(ctx, &scores_filter, static_cast<T>(0));
|
|
return std::make_pair(bbox_sel, scores_filter);
|
|
}
|
|
|
|
Tensor scores_filter;
|
|
bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
|
|
scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
|
|
CPUGather<T>(ctx, proposals, keep, &bbox_sel);
|
|
CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
|
|
if (nms_thresh <= 0) {
|
|
return std::make_pair(bbox_sel, scores_filter);
|
|
}
|
|
|
|
Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);
|
|
|
|
if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
|
|
keep_nms.Resize({post_nms_top_n});
|
|
}
|
|
|
|
proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
|
|
scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
|
|
CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
|
|
CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);
|
|
|
|
return std::make_pair(proposals, scores_sel);
|
|
}
|
|
};
|
|
|
|
class GenerateProposalsV2OpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Scores",
|
|
"(Tensor) The scores from conv is in shape (N, A, H, W), "
|
|
"N is batch size, A is number of anchors, "
|
|
"H and W are height and width of the feature map");
|
|
AddInput("BboxDeltas",
|
|
"(Tensor) Bounding box deltas from conv is in "
|
|
"shape (N, 4*A, H, W).");
|
|
AddInput("ImShape",
|
|
"(Tensor) Image shape in shape (N, 2), "
|
|
"in format (height, width)");
|
|
AddInput("Anchors",
|
|
"(Tensor) Bounding box anchors from anchor_generator_op "
|
|
"is in shape (A, H, W, 4).");
|
|
AddInput("Variances",
|
|
"(Tensor) Bounding box variances with same shape as `Anchors`.");
|
|
|
|
AddOutput("RpnRois",
|
|
"(LoDTensor), Output proposals with shape (rois_num, 4).");
|
|
AddOutput("RpnRoiProbs",
|
|
"(LoDTensor) Scores of proposals with shape (rois_num, 1).");
|
|
AddOutput("RpnRoisNum", "(Tensor), The number of Rpn RoIs in each image")
|
|
.AsDispensable();
|
|
AddAttr<int>("pre_nms_topN",
|
|
"Number of top scoring RPN proposals to keep before "
|
|
"applying NMS.");
|
|
AddAttr<int>("post_nms_topN",
|
|
"Number of top scoring RPN proposals to keep after "
|
|
"applying NMS");
|
|
AddAttr<float>("nms_thresh", "NMS threshold used on RPN proposals.");
|
|
AddAttr<float>("min_size",
|
|
"Proposal height and width both need to be greater "
|
|
"than this min_size.");
|
|
AddAttr<float>("eta", "The parameter for adaptive NMS.");
|
|
AddComment(R"DOC(
|
|
This operator is the second version of generate_proposals op to generate
|
|
bounding box proposals for Faster RCNN.
|
|
The proposals are generated for a list of images based on image
|
|
score 'Scores', bounding box regression result 'BboxDeltas' as
|
|
well as predefined bounding box shapes 'anchors'. Greedy
|
|
non-maximum suppression is applied to generate the final bounding
|
|
boxes.
|
|
|
|
The difference between this version and the first version is that the image
|
|
scale is no long needed now, so the input requires im_shape instead of im_info.
|
|
The change aims to unify the input for all kinds of objective detection
|
|
such as YOLO-v3 and Faster R-CNN. As a result, the min_size represents the
|
|
size on input image instead of original image which is slightly different
|
|
to before and will not effect the result.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
generate_proposals_v2, ops::GenerateProposalsV2Op,
|
|
ops::GenerateProposalsV2OpMaker,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OP_CPU_KERNEL(generate_proposals_v2,
|
|
ops::GenerateProposalsV2Kernel<float>,
|
|
ops::GenerateProposalsV2Kernel<double>);
|