You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.2 KiB
178 lines
6.2 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to) {
|
|
PADDLE_ENFORCE_NE(from, to,
|
|
"layout transform should transform different layout");
|
|
if (from == DataLayout::kNCHW && to == DataLayout::kNHWC) {
|
|
return {0, 2, 3, 1};
|
|
} else if (from == DataLayout::kNHWC && to == DataLayout::kNCHW) {
|
|
return {0, 3, 1, 2};
|
|
} else {
|
|
PADDLE_THROW("unsupported transform");
|
|
}
|
|
}
|
|
|
|
struct CastDataLayout {
|
|
CastDataLayout(const platform::DeviceContext* ctx,
|
|
const std::vector<int>& axis, const framework::Tensor& in,
|
|
framework::Tensor* out)
|
|
: in_(in), out_(out), ctx_(ctx), axis_(axis) {}
|
|
const framework::Tensor in_;
|
|
framework::Tensor* out_;
|
|
const platform::DeviceContext* ctx_;
|
|
const std::vector<int> axis_;
|
|
|
|
template <typename T>
|
|
void apply() {
|
|
auto place = ctx_->GetPlace();
|
|
|
|
if (platform::is_cpu_place(place)) {
|
|
operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
|
|
auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
|
|
trans4(*context, in_, out_, axis_);
|
|
} else {
|
|
PADDLE_THROW("Unsupport CPU <-> GPU!");
|
|
}
|
|
}
|
|
};
|
|
|
|
void TransDataLayout(const OpKernelType& kernel_type_for_var,
|
|
const OpKernelType& expected_kernel_type, const Tensor& in,
|
|
Tensor* out) {
|
|
PADDLE_ENFORCE(
|
|
platform::places_are_same_class(kernel_type_for_var.place_,
|
|
expected_kernel_type.place_),
|
|
"TransDataLayout only support DataLayout transform on same place!");
|
|
|
|
PADDLE_ENFORCE(arity(in.dims()) == 4, "Input Arity only support 4!");
|
|
|
|
auto& pool = platform::DeviceContextPool::Instance();
|
|
|
|
auto src_dim = in.dims();
|
|
std::vector<int64_t> dst_dim;
|
|
|
|
auto axis = GetAxis(kernel_type_for_var.data_layout_,
|
|
expected_kernel_type.data_layout_);
|
|
dst_dim.resize(axis.size());
|
|
for (size_t i = 0; i < axis.size(); i++) {
|
|
dst_dim[i] = src_dim[axis[i]];
|
|
}
|
|
|
|
out->Resize(make_ddim(dst_dim));
|
|
out->mutable_data(expected_kernel_type.place_, in.type());
|
|
|
|
framework::VisitDataType(
|
|
in.type(),
|
|
CastDataLayout(pool.Get(expected_kernel_type.place_), axis, in, out));
|
|
|
|
out->set_layout(expected_kernel_type.data_layout_);
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
using mkldnn::memory;
|
|
using mkldnn::primitive;
|
|
using mkldnn::reorder;
|
|
|
|
void* GetDataFromTensor(const Tensor& tensor, mkldnn::memory::data_type type) {
|
|
switch (type) {
|
|
case mkldnn::memory::data_type::f32:
|
|
return platform::to_void_cast(tensor.data<float>());
|
|
case mkldnn::memory::data_type::s8:
|
|
return platform::to_void_cast(tensor.data<int8_t>());
|
|
case mkldnn::memory::data_type::u8:
|
|
return platform::to_void_cast(tensor.data<unsigned char>());
|
|
case mkldnn::memory::data_type::s16:
|
|
return platform::to_void_cast(tensor.data<int16_t>());
|
|
case mkldnn::memory::data_type::s32:
|
|
return platform::to_void_cast(tensor.data<int32_t>());
|
|
default:
|
|
PADDLE_THROW("wrong mkldnn type provided");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
|
|
const OpKernelType& expected_kernel_type,
|
|
const Tensor& in, Tensor* out) {
|
|
auto in_layout = kernel_type_for_var.data_layout_;
|
|
auto out_layout = expected_kernel_type.data_layout_;
|
|
|
|
PADDLE_ENFORCE(
|
|
in_layout == DataLayout::kMKLDNN && out_layout != DataLayout::kMKLDNN,
|
|
"TransDataLayoutFromMKLDNN only supports transform from MKLDNN to "
|
|
"non-MKLDNN");
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
PADDLE_ENFORCE(in.format() != memory::format::format_undef &&
|
|
in.format() != memory::format::any,
|
|
"Input tensor should have specified memory format");
|
|
|
|
// Set default as NCHW in case not specified
|
|
out_layout =
|
|
out_layout == DataLayout::kAnyLayout ? DataLayout::kNCHW : out_layout;
|
|
|
|
auto& pool = platform::DeviceContextPool::Instance();
|
|
auto* dev_ctx = dynamic_cast<platform::MKLDNNDeviceContext*>(
|
|
pool.Get(expected_kernel_type.place_));
|
|
auto& cpu_engine = dev_ctx->GetEngine();
|
|
|
|
std::vector<int> in_tz = paddle::framework::vectorize2int(in.dims());
|
|
std::vector<int> out_tz = in_tz;
|
|
|
|
memory::data_type in_type = ToMKLDNNDataType(in.type());
|
|
PADDLE_ENFORCE(in_type != memory::data_type::data_undef,
|
|
"Input tensor type is not supported: %s", in.type());
|
|
memory::data_type out_type = in_type;
|
|
|
|
auto in_format = platform::MKLDNNFormatForSize(in_tz.size(), in.format());
|
|
auto out_format =
|
|
platform::MKLDNNFormatForSize(in_tz.size(), ToMKLDNNFormat(out_layout));
|
|
|
|
// output tensor has the same dims as input. Reorder don't change dims
|
|
out->Resize(in.dims());
|
|
|
|
if (in_format != out_format) {
|
|
void* in_data = GetDataFromTensor(in, in_type);
|
|
auto out_data = out->mutable_data(expected_kernel_type.place_, in.type());
|
|
|
|
auto in_memory =
|
|
memory({{{in_tz}, in_type, in_format}, cpu_engine}, in_data);
|
|
auto out_memory =
|
|
memory({{{out_tz}, out_type, out_format}, cpu_engine}, out_data);
|
|
|
|
platform::Reorder(in_memory, out_memory);
|
|
} else {
|
|
out->ShareDataWith(in);
|
|
}
|
|
out->set_layout(out_layout);
|
|
// reset format since the out tensor will be feed to non-MKLDNN OPkernel
|
|
out->set_format(memory::format::format_undef);
|
|
#endif
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|