You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/book/test_inference_word2vec.cc

69 lines
2.5 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
TEST(inference, word2vec) {
if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
}
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::string dirname = FLAGS_dirname;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle::framework::LoDTensor first_word, second_word, third_word, fourth_word;
paddle::framework::LoD lod{{0, 1}};
int64_t dict_size = 2073; // The size of dictionary
SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&first_word);
cpu_feeds.push_back(&second_word);
cpu_feeds.push_back(&third_word);
cpu_feeds.push_back(&fourth_word);
paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);
// Run inference on CPU
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds, cpu_fetchs1);
LOG(INFO) << output1.lod();
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
paddle::framework::LoDTensor output2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
cpu_fetchs2.push_back(&output2);
// Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << output2.lod();
LOG(INFO) << output2.dims();
CheckError<float>(output1, output2);
#endif
}