You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/tests/test_layer.cc

410 lines
15 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Created by Jiabin on 2019-08-16.
//
#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/imperative/execution_context.h"
#include "paddle/fluid/imperative/infer_shape_context.h"
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/layer.h"
namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;
namespace paddle {
namespace imperative {
using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;
using var_pair = std::pair<std::string, vb_vector>;
template <typename VarType>
class TestRuntimeInferVarTypeContext
: public RuntimeInferVarTypeContext<VarType> {
public:
TestRuntimeInferVarTypeContext(const NameVarMap<VarType>& inputs,
const NameVarMap<VarType>& outputs,
const framework::AttributeMap& attrs_map)
: RuntimeInferVarTypeContext<VarType>(inputs, outputs, attrs_map) {}
bool HasVar(const std::string& name) const {
return RuntimeInferVarTypeContext<VarType>::HasVar(name);
}
const std::vector<std::string>& InputVars(const std::string& name) const {
return RuntimeInferVarTypeContext<VarType>::InputVars(name);
}
const std::vector<std::string>& OutputVars(const std::string& name) const {
return RuntimeInferVarTypeContext<VarType>::OutputVars(name);
}
framework::proto::VarType::Type GetVarType(const std::string& name) const {
return RuntimeInferVarTypeContext<VarType>::GetVarType(name);
}
void SetVarType(const std::string& name,
framework::proto::VarType::Type type) {
RuntimeInferVarTypeContext<VarType>::SetVarType(name, type);
}
framework::proto::VarType::Type GetVarDataType(
const std::string& name) const {
return RuntimeInferVarTypeContext<VarType>::GetVarDataType(name);
}
void SetVarDataType(const std::string& name,
framework::proto::VarType::Type type) {
RuntimeInferVarTypeContext<VarType>::SetVarDataType(name, type);
}
std::vector<framework::proto::VarType::Type> GetVarDataTypes(
const std::string& name) const {
return RuntimeInferVarTypeContext<VarType>::GetVarDataTypes(name);
}
void SetVarDataTypes(
const std::string& name,
const std::vector<framework::proto::VarType::Type>& multiple_data_type) {
RuntimeInferVarTypeContext<VarType>::SetVarDataTypes(name,
multiple_data_type);
}
std::vector<int64_t> GetVarShape(const std::string& name) const {
return RuntimeInferVarTypeContext<VarType>::GetVarShape(name);
}
void SetVarShape(const std::string& name, const std::vector<int64_t>& dims) {
RuntimeInferVarTypeContext<VarType>::SetVarShape(name, dims);
}
int32_t GetVarLoDLevel(const std::string& name) const {
return RuntimeInferVarTypeContext<VarType>::GetVarLoDLevel(name);
}
void SetVarLoDLevel(const std::string& name, int32_t lod_level) {
RuntimeInferVarTypeContext<VarType>::SetVarLoDLevel(name, lod_level);
}
};
TEST(test_layer, test_runtime_context) {
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
std::shared_ptr<imperative::VarBase> vin_b(
new imperative::VarBase(false, "vin_b"));
std::shared_ptr<imperative::VarBase> vout(
new imperative::VarBase(false, "vout"));
std::shared_ptr<imperative::VarBase> vout_b(
new imperative::VarBase(false, "vout_b"));
var_pair in_pair = var_pair("X", {vin, vin_b});
var_pair out_pair = var_pair("Out", {vout, vout_b});
imperative::NameVarBaseMap ins = {in_pair};
imperative::NameVarBaseMap outs = {out_pair};
framework::AttributeMap attrs;
auto* ctx =
new imperative::TestRuntimeInferVarTypeContext<imperative::VarBase>(
ins, outs, attrs);
ASSERT_TRUE(ctx->HasInput("X"));
ASSERT_TRUE(ctx->HasOutput("Out"));
ASSERT_EQ(2u, ctx->InputSize("X"));
ASSERT_EQ("vin", ctx->InputVarName("X", 0));
ASSERT_TRUE(ctx->InputTypeAnyOf("X", framework::proto::VarType::LOD_TENSOR));
ASSERT_TRUE(ctx->InputTypeAllOf("X", framework::proto::VarType::LOD_TENSOR));
ASSERT_EQ(framework::proto::VarType::LOD_TENSOR, ctx->GetInputType("X"));
ASSERT_EQ(framework::proto::VarType::FP32, ctx->GetInputDataType("X"));
ctx->SyncTypeAndDataType("X", "Out");
ASSERT_EQ(framework::proto::VarType::FP32, vout->DataType());
ASSERT_EQ(framework::proto::VarType::LOD_TENSOR, ctx->GetOutputType("Out"));
ctx->SetOutputType("Out", framework::proto::VarType::SELECTED_ROWS,
framework::ALL_ELEMENTS);
ctx->SetOutputType("Out", framework::proto::VarType::LOD_TENSOR_ARRAY);
ASSERT_EQ(framework::proto::VarType::LOD_TENSOR_ARRAY, vout->Type());
ASSERT_EQ(framework::proto::VarType::SELECTED_ROWS, vout_b->Type());
ctx->SetOutputDataType("Out", framework::proto::VarType::FP64,
framework::ALL_ELEMENTS);
ctx->SetOutputDataType("Out", framework::proto::VarType::INT8);
ASSERT_EQ(framework::proto::VarType::INT8, vout->DataType());
ASSERT_EQ(framework::proto::VarType::FP64, vout_b->DataType());
// no throw, but do nothing
ASSERT_NO_THROW(
ctx->InsertVar("vout", framework::proto::VarType::LOD_TENSOR));
ASSERT_EQ(framework::proto::VarType::LOD_TENSOR_ARRAY, vout->Type());
ASSERT_ANY_THROW(ctx->HasVar("vin"));
ASSERT_ANY_THROW(ctx->InputVars("X"));
ASSERT_ANY_THROW(ctx->OutputVars("Out"));
ASSERT_ANY_THROW(ctx->GetVarType("vin"));
ASSERT_ANY_THROW(
ctx->SetVarType("vin", framework::proto::VarType::LOD_TENSOR));
ASSERT_ANY_THROW(ctx->GetVarDataType("vin"));
ASSERT_ANY_THROW(
ctx->SetVarDataType("vout", framework::proto::VarType::FP32));
ASSERT_ANY_THROW(ctx->GetVarDataTypes("vin"));
std::vector<framework::proto::VarType::Type> NullType;
ASSERT_ANY_THROW(ctx->SetVarDataTypes("vin", NullType));
ASSERT_ANY_THROW(ctx->GetVarShape("vin"));
ASSERT_ANY_THROW(ctx->SetVarShape("vin", {}));
ASSERT_ANY_THROW(ctx->GetVarLoDLevel("vin"));
ASSERT_ANY_THROW(ctx->SetVarLoDLevel("vin", 2));
ASSERT_TRUE(ctx->IsDygraph());
}
std::string LayerDebugString(const std::string& op_type,
const NameVarBaseMap& ins,
const NameVarBaseMap& outs);
TEST(test_layer, test_debug_string) {
platform::CPUPlace place;
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
var_pair in_pair = var_pair("X", vb_vector(1, vin));
auto test_func = [&](std::shared_ptr<imperative::VarBase>& vout) {
var_pair out_pair = var_pair("Out", vb_vector(1, vout));
imperative::NameVarBaseMap ins = {in_pair};
imperative::NameVarBaseMap outs = {out_pair};
return LayerDebugString("test_op", ins, outs);
};
// 1. test null
std::shared_ptr<imperative::VarBase> null_out(nullptr);
std::string res_null = test_func(null_out);
ASSERT_TRUE(res_null.find("NULL") != std::string::npos);
// 2. test uninit var
std::shared_ptr<imperative::VarBase> un_init_out(
new imperative::VarBase(false, "un_init_out"));
std::string res_un_init = test_func(un_init_out);
ASSERT_TRUE(res_un_init.find("NOT_INITED_VAR") != std::string::npos);
// 3. test unresolved type
std::shared_ptr<imperative::VarBase> ut_out(
new imperative::VarBase(false, "ut_out"));
ut_out->MutableVar()->GetMutable<framework::LoDTensorArray>();
std::string res_ut = test_func(ut_out);
ASSERT_TRUE(res_ut.find("UNRESOLVED_TYPE") != std::string::npos);
// 4. test uninit lod tensor
std::shared_ptr<imperative::VarBase> lod_tensor(
new imperative::VarBase(false, "lod_tensor"));
auto tensor_l = lod_tensor->MutableVar()->GetMutable<framework::LoDTensor>();
std::string res_ui_lod_t = test_func(lod_tensor);
ASSERT_TRUE(res_ui_lod_t.find("NOT_INITED") != std::string::npos);
// 5. test init lod tensor
tensor_l->mutable_data<float>(place);
std::string res_lod_t = test_func(lod_tensor);
ASSERT_TRUE(res_lod_t.find("LoDTensor") != std::string::npos);
// 6. test uninit selected rows
std::shared_ptr<imperative::VarBase> selected_rows(
new imperative::VarBase(false, "selected_rows"));
auto tensor_sr = selected_rows->MutableVar()
->GetMutable<framework::SelectedRows>()
->mutable_value();
std::string res_ui_sr = test_func(selected_rows);
ASSERT_TRUE(res_ui_sr.find("NOT_INITED") != std::string::npos);
// 7. test init selected rows
tensor_sr->mutable_data<float>(place);
std::string res_sr = test_func(selected_rows);
ASSERT_TRUE(res_sr.find("SelectedRows") != std::string::npos);
}
static std::shared_ptr<imperative::GradOpNode> CreateGradNode(
size_t id, const std::string& type, const imperative::NameVarBaseMap& ins,
const imperative::NameVarBaseMap& outs,
const framework::AttributeMap& attrs, const platform::Place& place) {
auto node = std::make_shared<imperative::GradOpNode>();
auto* op = &(node->emplace_back());
op->SetId(id);
op->SetPlace(place);
op->SetType(type);
op->SetAttrMap(attrs);
for (auto& pair : ins) {
std::vector<std::shared_ptr<VariableWrapper>> vars;
for (auto& var : pair.second) {
vars.emplace_back(var->SharedVar());
}
op->SetInput(pair.first, vars, false);
}
for (auto& pair : outs) {
std::vector<std::shared_ptr<VariableWrapper>> vars;
for (auto& var : pair.second) {
vars.emplace_back(var->SharedVar());
}
op->SetOutput(pair.first, vars, false);
}
return node;
}
TEST(test_layer, test_clear_backward_info) {
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
std::shared_ptr<imperative::VarBase> vout(
new imperative::VarBase(false, "vout"));
framework::OpDesc desc;
platform::CPUPlace place;
var_pair x_pair = var_pair("X", vb_vector(1, vin));
var_pair y_pair = var_pair("Y", vb_vector(1, vin));
var_pair out_pair = var_pair("Out", vb_vector(1, vout));
imperative::NameVarBaseMap ins = {x_pair, y_pair};
imperative::NameVarBaseMap outs = {out_pair};
framework::AttributeMap concat_att_map;
concat_att_map["axis"] = 1;
auto node = CreateGradNode(0, "mul", ins, outs, concat_att_map, place);
auto pending_node =
CreateGradNode(0, "mul", ins, outs, concat_att_map, place);
node->InsertGradPendingNode(pending_node);
ASSERT_EQ(node->size(), 1UL);
auto* op = &(node->back());
ASSERT_GT(op->GetInsMap().size(), 0UL);
ASSERT_GT(op->GetOutsMap().size(), 0UL);
op->ClearBackwardTrace();
ASSERT_EQ(op->GetInsMap().size(), 0UL);
ASSERT_EQ(op->GetOutsMap().size(), 0UL);
}
TEST(test_layer, test_varbase_basic) {
platform::CPUPlace place;
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
place);
std::shared_ptr<imperative::VarBase> vout(vin->NewVarBase(place, false));
ASSERT_EQ(vout->Name(), "vin0");
std::shared_ptr<imperative::VarBase> vin_with_grad(
new imperative::VarBase(true, "vin"));
ASSERT_ANY_THROW(vin->MutableGradVar());
ASSERT_NO_THROW(ASSERT_TRUE(dynamic_cast<framework::Variable*>(
vin_with_grad->MutableGradVar()) != 0));
ASSERT_TRUE(
dynamic_cast<framework::Variable*>(vin_with_grad->MutableGradVar()) != 0);
vin_with_grad->SetOverridedStopGradient(false);
ASSERT_FALSE(vin_with_grad->OverridedStopGradient());
ASSERT_NO_FATAL_FAILURE(vin_with_grad->SetPersistable(true));
ASSERT_FALSE(vin_with_grad->OverridedStopGradient());
ASSERT_NO_FATAL_FAILURE(vin_with_grad->SetName("new_name"));
ASSERT_EQ(vin_with_grad->Name(), "new_name");
}
// TODO(jiabin): Add more ut here for layer
TEST(test_layer, test_dygraph_execution_context) {
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
std::shared_ptr<imperative::VarBase> vout(
new imperative::VarBase(false, "vout"));
framework::OpDesc desc;
platform::CPUPlace place;
var_pair x_pair = var_pair("X", vb_vector(1, vin));
var_pair y_pair = var_pair("Y", vb_vector(1, vin));
var_pair out_pair = var_pair("Out", vb_vector(1, vout));
imperative::NameVarBaseMap ins = {x_pair, y_pair};
imperative::NameVarBaseMap outs = {out_pair};
framework::AttributeMap concat_att_map;
concat_att_map["axis"] = 1;
auto op = framework::OpRegistry::CreateOp("mul", {}, {}, {}, false);
paddle::platform::CPUPlace cpu_place;
paddle::platform::DeviceContextPool& pool =
paddle::platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(cpu_place);
paddle::framework::RuntimeContext ctx({}, {});
framework::Scope scope;
DygraphExecutionContext<imperative::VarBase> dy_exe_context(
*(op.get()), scope, *dev_ctx, ctx, ins, outs, concat_att_map);
ASSERT_EQ(dy_exe_context.InputSize("X"), 1u);
ASSERT_EQ(dy_exe_context.InputName("X"), "vin");
ASSERT_EQ(dy_exe_context.HasAttr("axis"), true);
auto attr_map = dy_exe_context.Attrs();
ASSERT_EQ(BOOST_GET(int, attr_map["axis"]), 1);
ASSERT_EQ(dy_exe_context.OutputSize("Out"), 1u);
ASSERT_EQ(dy_exe_context.HasOutput("Out"), true);
}
TEST(test_layer, test_dygraph_infershape_context) {
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
std::shared_ptr<imperative::VarBase> vout(
new imperative::VarBase(false, "vout"));
framework::OpDesc desc;
platform::CPUPlace place;
var_pair x_pair = var_pair("X", vb_vector(1, vin));
var_pair y_pair = var_pair("Y", vb_vector(1, vin));
var_pair out_pair = var_pair("Out", vb_vector(1, vout));
imperative::NameVarBaseMap ins = {x_pair, y_pair};
imperative::NameVarBaseMap outs = {out_pair};
framework::AttributeMap concat_att_map;
concat_att_map["axis"] = 1;
DygraphInferShapeContext<imperative::VarBase> infer_shape_ctx(
&ins, &outs, &concat_att_map, "dummy");
bool have_x = infer_shape_ctx.HasOutputs("Out");
ASSERT_EQ(have_x, true);
bool have_z = infer_shape_ctx.HasOutputs("Z");
ASSERT_EQ(have_z, false);
}
TEST(test_layer, test_inner_op_not_inited) {
OpBase op;
std::string kUnknown = "unknown";
ASSERT_EQ(op.Type(), kUnknown);
ASSERT_THROW(op.Info(), platform::EnforceNotMet);
ASSERT_THROW(op.InnerOp(), platform::EnforceNotMet);
ASSERT_THROW(op.CheckAttrs(), platform::EnforceNotMet);
}
} // namespace imperative
} // namespace paddle
USE_OP(mul);