You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.6 KiB
80 lines
2.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def AffineGrid(theta, size):
|
|
n = size[0]
|
|
w = size[3]
|
|
h = size[2]
|
|
h_idx = np.repeat(
|
|
np.linspace(-1, 1, h)[np.newaxis, :], w, axis=0).T[:, :, np.newaxis]
|
|
w_idx = np.repeat(
|
|
np.linspace(-1, 1, w)[np.newaxis, :], h, axis=0)[:, :, np.newaxis]
|
|
grid = np.concatenate(
|
|
[w_idx, h_idx, np.ones([h, w, 1])], axis=2) # h * w * 3
|
|
grid = np.repeat(grid[np.newaxis, :], size[0], axis=0) # n * h * w *3
|
|
|
|
ret = np.zeros([n, h * w, 2])
|
|
theta = theta.transpose([0, 2, 1])
|
|
for i in range(len(theta)):
|
|
ret[i] = np.dot(grid[i].reshape([h * w, 3]), theta[i])
|
|
|
|
# print ret.reshape([h * w, 2]).astype("float32")
|
|
return ret.reshape([n, h, w, 2]).astype("float32")
|
|
|
|
|
|
class TestAffineGridOp(OpTest):
|
|
def setUp(self):
|
|
self.initTestCase()
|
|
self.op_type = "affine_grid"
|
|
theta = np.random.randint(1, 3, self.theta_shape).astype("float32")
|
|
theta = np.ones(self.theta_shape).astype("float32")
|
|
self.inputs = {'Theta': theta}
|
|
self.attrs = {"use_cudnn": True}
|
|
if self.dynamic_shape:
|
|
self.inputs['OutputShape'] = self.output_shape
|
|
else:
|
|
self.attrs['output_shape'] = self.output_shape
|
|
self.outputs = {'Output': AffineGrid(theta, self.output_shape)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(
|
|
['Theta'],
|
|
'Output',
|
|
no_grad_set=['OutputShape'],
|
|
max_relative_error=0.006)
|
|
|
|
def initTestCase(self):
|
|
self.theta_shape = (3, 2, 3)
|
|
self.output_shape = np.array([3, 2, 5, 7]).astype("int32")
|
|
self.dynamic_shape = False
|
|
|
|
|
|
class TestAffineGridOpCase1(TestAffineGridOp):
|
|
def initTestCase(self):
|
|
self.theta_shape = (3, 2, 3)
|
|
self.output_shape = np.array([3, 2, 5, 7]).astype("int32")
|
|
self.dynamic_shape = True
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|