You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
5.6 KiB
169 lines
5.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.optimizer import SGDOptimizer
|
|
from paddle.fluid import Conv2D, Pool2D, FC, core
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
|
|
class SimpleImgConvPool(fluid.Layer):
|
|
def __init__(self,
|
|
name_scope,
|
|
num_filters,
|
|
filter_size,
|
|
pool_size,
|
|
pool_stride,
|
|
pool_padding=0,
|
|
pool_type='max',
|
|
global_pooling=False,
|
|
conv_stride=1,
|
|
conv_padding=0,
|
|
conv_dilation=1,
|
|
conv_groups=1,
|
|
act=None,
|
|
use_cudnn=False,
|
|
param_attr=None,
|
|
bias_attr=None):
|
|
super(SimpleImgConvPool, self).__init__(name_scope)
|
|
|
|
self._conv2d = Conv2D(
|
|
self.full_name(),
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=conv_stride,
|
|
padding=conv_padding,
|
|
dilation=conv_dilation,
|
|
groups=conv_groups,
|
|
param_attr=None,
|
|
bias_attr=None,
|
|
use_cudnn=use_cudnn)
|
|
|
|
self._pool2d = Pool2D(
|
|
self.full_name(),
|
|
pool_size=pool_size,
|
|
pool_type=pool_type,
|
|
pool_stride=pool_stride,
|
|
pool_padding=pool_padding,
|
|
global_pooling=global_pooling,
|
|
use_cudnn=use_cudnn)
|
|
|
|
def forward(self, inputs):
|
|
x = self._conv2d(inputs)
|
|
x = self._pool2d(x)
|
|
return x
|
|
|
|
|
|
class MNIST(fluid.Layer):
|
|
def __init__(self, name_scope):
|
|
super(MNIST, self).__init__(name_scope)
|
|
|
|
self._simple_img_conv_pool_1 = SimpleImgConvPool(
|
|
self.full_name(), 20, 5, 2, 2, act="relu")
|
|
|
|
self._simple_img_conv_pool_2 = SimpleImgConvPool(
|
|
self.full_name(), 50, 5, 2, 2, act="relu")
|
|
|
|
pool_2_shape = 50 * 4 * 4
|
|
SIZE = 10
|
|
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
|
|
self._fc = FC(self.full_name(),
|
|
10,
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.NormalInitializer(
|
|
loc=0.0, scale=scale)),
|
|
act="softmax")
|
|
|
|
def forward(self, inputs):
|
|
x = self._simple_img_conv_pool_1(inputs)
|
|
x = self._simple_img_conv_pool_2(x)
|
|
x = self._fc(x)
|
|
return x
|
|
|
|
|
|
class TestDygraphCheckpoint(unittest.TestCase):
|
|
def reader_decorator(self, reader):
|
|
def _reader_imple():
|
|
for item in reader():
|
|
image = np.array(item[0]).reshape(1, 28, 28)
|
|
label = np.array(item[1]).astype('int64').reshape(1)
|
|
yield image, label
|
|
|
|
return _reader_imple
|
|
|
|
def test_save_load_persistables(self):
|
|
seed = 90
|
|
epoch_num = 1
|
|
batch_size = 128
|
|
|
|
with fluid.dygraph.guard():
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
mnist = MNIST("mnist")
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
|
|
batch_py_reader = fluid.io.PyReader(capacity=1)
|
|
batch_py_reader.decorate_sample_list_generator(
|
|
paddle.batch(
|
|
self.reader_decorator(paddle.dataset.mnist.train()),
|
|
batch_size=batch_size,
|
|
drop_last=True),
|
|
places=fluid.CPUPlace())
|
|
|
|
dy_param_init_value = {}
|
|
|
|
for epoch in range(epoch_num):
|
|
for batch_id, data in enumerate(batch_py_reader()):
|
|
img = data[0]
|
|
label = data[1]
|
|
label.stop_gradient = True
|
|
|
|
cost = mnist(img)
|
|
loss = fluid.layers.cross_entropy(cost, label)
|
|
avg_loss = fluid.layers.mean(loss)
|
|
|
|
dy_out = avg_loss.numpy()
|
|
|
|
avg_loss.backward()
|
|
sgd.minimize(avg_loss)
|
|
fluid.dygraph.save_persistables(mnist.state_dict(),
|
|
"save_dir")
|
|
mnist.clear_gradients()
|
|
|
|
for param in mnist.parameters():
|
|
dy_param_init_value[param.name] = param.numpy()
|
|
|
|
restore, _ = fluid.dygraph.load_persistables("save_dir")
|
|
mnist.load_dict(restore)
|
|
|
|
self.assertEqual(len(dy_param_init_value), len(restore))
|
|
for ky, value in restore.items():
|
|
self.assertTrue(
|
|
np.allclose(value.numpy(), dy_param_init_value[
|
|
value.name]))
|
|
self.assertTrue(np.isfinite(value.numpy().all()))
|
|
self.assertFalse(np.isnan(value.numpy().any()))
|
|
|
|
if batch_id > 10:
|
|
break
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|