You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
280 lines
12 KiB
280 lines
12 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "boost/optional.hpp"
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/memory/malloc.h"
|
|
#include "paddle/fluid/operators/conv_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_reuse.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using framework::DataLayout;
|
|
|
|
template <typename T>
|
|
class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
|
|
paddle::platform::errors::PreconditionNotMet(
|
|
"Operator DNNL ConvTranspose must use CPUPlace"));
|
|
const bool is_test = ctx.Attr<bool>("is_test");
|
|
PADDLE_ENFORCE_EQ(is_test, true,
|
|
platform::errors::InvalidArgument(
|
|
"ConvTransposeMKLDNN works only for inference. "
|
|
"Set is_test = True. but got is_test=False ."));
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* filter = ctx.Input<Tensor>("Filter");
|
|
auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
input->layout(), DataLayout::kMKLDNN,
|
|
platform::errors::InvalidArgument(
|
|
"Got wrong layout = %d for Input tensor.", input->layout()));
|
|
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
|
|
platform::errors::InvalidArgument(
|
|
"Got wrong format for Input tensor."));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
filter->layout(), DataLayout::kMKLDNN,
|
|
platform::errors::InvalidArgument(
|
|
"The filter tensor's laytout should be %d, but got %d.",
|
|
DataLayout::kMKLDNN, filter->layout()));
|
|
PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
|
|
platform::errors::InvalidArgument(
|
|
"Got wrong formats for Filter tensor."));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
input->dims().size(), 4,
|
|
platform::errors::InvalidArgument(
|
|
"Input must be with 4 dimensions, i.e. NCHW. but got dimension =%d",
|
|
input->dims().size()));
|
|
PADDLE_ENFORCE_EQ(
|
|
filter->dims().size(), 4,
|
|
platform::errors::InvalidArgument("Filter must be with 4 dimensions, "
|
|
"i.e. OIHW, but got dimension =%d",
|
|
filter->dims().size()));
|
|
|
|
if (bias) {
|
|
PADDLE_ENFORCE_EQ(
|
|
bias->layout(), DataLayout::kMKLDNN,
|
|
platform::errors::InvalidArgument(
|
|
"The bias tensor's laytout should be %d, but got %d.",
|
|
DataLayout::kMKLDNN, bias->layout()));
|
|
PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
|
|
platform::errors::InvalidArgument(
|
|
"Got wrong format for Bias tensor."));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
bias->dims().size(), 1,
|
|
platform::errors::InvalidArgument("Bias must only have 1 dimension, "
|
|
"i.e. X, but got dimension = %d .",
|
|
bias->dims().size()));
|
|
}
|
|
|
|
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
|
|
|
|
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
|
|
|
|
std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
|
|
std::vector<int64_t> dilations(begin(dilations_temp), end(dilations_temp));
|
|
|
|
int groups = ctx.Attr<int>("groups");
|
|
std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
strides.size(), 2,
|
|
platform::errors::Unimplemented(
|
|
"Now we only support 2d oneDNN convolution transpose op"));
|
|
|
|
auto input_dims = input->dims();
|
|
auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
|
|
auto filter_dims = filter->dims();
|
|
auto filter_data_dims =
|
|
framework::slice_ddim(filter_dims, 2, filter_dims.size());
|
|
|
|
auto ksize = framework::vectorize(filter_data_dims);
|
|
|
|
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
|
|
data_dims, strides, ksize);
|
|
|
|
std::transform(dilations.begin(), dilations.end(), dilations.begin(),
|
|
[](int64_t i) { return i - 1; });
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
|
|
auto src_tz = paddle::framework::vectorize<int64_t>(input->dims());
|
|
auto iohw_weights_tz =
|
|
paddle::framework::vectorize<int64_t>(filter->dims());
|
|
auto weights_tz = iohw_weights_tz;
|
|
|
|
// IOHW -> OIHW
|
|
weights_tz[0] = iohw_weights_tz[1];
|
|
weights_tz[1] = iohw_weights_tz[0];
|
|
|
|
// Custom Reorder from IOHW to OIHW
|
|
auto iohw2oihw_reorder =
|
|
[&iohw_weights_tz](const T* filter_data) -> std::shared_ptr<T> {
|
|
int o = iohw_weights_tz[1];
|
|
int c = iohw_weights_tz[0];
|
|
int h = iohw_weights_tz[2];
|
|
int w = iohw_weights_tz[3];
|
|
std::shared_ptr<T> reordered_filter_data(new T[o * c * h * w](),
|
|
std::default_delete<T[]>());
|
|
for (int i = 0; i < c; ++i) {
|
|
for (int j = 0; j < o; ++j) {
|
|
int in_offset = j * h * w + i * o * h * w;
|
|
int out_offset = j * c * h * w + i * h * w;
|
|
std::memcpy(&(reordered_filter_data.get())[out_offset],
|
|
&filter_data[in_offset], h * w * sizeof(T));
|
|
}
|
|
}
|
|
|
|
return reordered_filter_data;
|
|
};
|
|
|
|
int g = std::max(groups, 1);
|
|
if (g > 1) {
|
|
int o = weights_tz[0];
|
|
int i = weights_tz[1];
|
|
int h = weights_tz[2];
|
|
int w = weights_tz[3];
|
|
weights_tz.resize(5);
|
|
weights_tz[0] = g;
|
|
weights_tz[1] = o / g;
|
|
weights_tz[2] = i;
|
|
weights_tz[3] = h;
|
|
weights_tz[4] = w;
|
|
}
|
|
auto dst_tz = paddle::framework::vectorize<int64_t>(output->dims());
|
|
|
|
// Get unique name for storing MKLDNN primitives
|
|
|
|
const std::string key =
|
|
platform::CreateKey(src_tz, ctx.OutputName("Output"));
|
|
|
|
std::vector<mkldnn::primitive> pipeline;
|
|
|
|
auto user_src_md = platform::MKLDNNMemDesc(
|
|
{src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
|
|
auto user_weights_md = platform::MKLDNNMemDesc(
|
|
{weights_tz}, platform::MKLDNNGetDataType<T>(),
|
|
(g == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);
|
|
|
|
/* create memory descriptor for convolution without specified format
|
|
* ('any') which lets a primitive (convolution in this case) choose
|
|
* the memory format preferred for best performance
|
|
*/
|
|
auto chosen_memory_format = MKLDNNMemoryFormat::any;
|
|
std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
|
|
float fuse_alpha = ctx.Attr<float>("fuse_alpha");
|
|
float fuse_beta = ctx.Attr<float>("fuse_beta");
|
|
|
|
auto src_md = platform::MKLDNNMemDesc(
|
|
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
std::vector<int64_t> bias_tz;
|
|
auto dst_md = platform::MKLDNNMemDesc(
|
|
dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
|
|
|
|
platform::ConvTransposeMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);
|
|
// create a deconv(conv transpose) primitive descriptor and save it for
|
|
// usage in backward
|
|
std::shared_ptr<mkldnn::deconvolution_forward::primitive_desc>
|
|
conv_transpose_pd;
|
|
auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
|
|
: mkldnn::prop_kind::forward_training;
|
|
if (bias) {
|
|
bias_tz = paddle::framework::vectorize<int64_t>(bias->dims());
|
|
auto bias_md = platform::MKLDNNMemDesc(
|
|
bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
|
|
conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
|
|
src_md, weights_md, bias_md, dst_md, strides, dilations, paddings,
|
|
mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta, false,
|
|
fwd_prop_kind);
|
|
} else {
|
|
conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor(
|
|
src_md, weights_md, boost::none, dst_md, strides, dilations, paddings,
|
|
mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta, false,
|
|
fwd_prop_kind);
|
|
}
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
auto user_src_memory_p = handler.AcquireSrcMemory(
|
|
user_src_md, platform::to_void_cast<T>(input_data));
|
|
auto user_weights_memory_p = handler.AcquireWeightsMemory(
|
|
user_weights_md, platform::to_void_cast<T>(filter_data),
|
|
is_test ? iohw2oihw_reorder : platform::user_function());
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
auto src_memory_p =
|
|
handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
|
|
auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
|
|
user_weights_memory_p, pipeline, is_test);
|
|
|
|
auto output_data =
|
|
output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
|
|
auto dst_memory_p = handler.AcquireDstMemoryFromPrimitive(
|
|
platform::to_void_cast<T>(output_data));
|
|
|
|
auto conv_p = handler.AcquireConvolution();
|
|
|
|
mkldnn::stream astream(mkldnn_engine);
|
|
if (bias) {
|
|
const T* bias_data = bias->data<T>();
|
|
auto user_bias_md = platform::MKLDNNMemDesc(
|
|
{bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
|
|
auto user_bias_memory_p = handler.AcquireBiasMemory(
|
|
user_bias_md, platform::to_void_cast<T>(bias_data));
|
|
|
|
auto bias_memory_p =
|
|
handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
|
|
|
|
conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_BIAS, *bias_memory_p},
|
|
{MKLDNN_ARG_DST, *dst_memory_p}});
|
|
} else {
|
|
conv_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory_p},
|
|
{MKLDNN_ARG_WEIGHTS, *weights_memory_p},
|
|
{MKLDNN_ARG_DST, *dst_memory_p}});
|
|
}
|
|
astream.wait();
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ConvTransposeMKLDNNOpKernel<float>);
|