You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
5.3 KiB
141 lines
5.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "mkldnn.hpp"
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/operators/dequantize_op.h"
|
|
#include "paddle/fluid/platform/errors.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
#include "paddle/fluid/platform/mkldnn_reuse.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using mkldnn::memory;
|
|
using mkldnn::primitive;
|
|
using mkldnn::reorder;
|
|
using platform::to_void_cast;
|
|
using Tensor = framework::Tensor;
|
|
using framework::DataLayout;
|
|
using mkldnn::stream;
|
|
using platform::GetMKLDNNFormat;
|
|
|
|
template <typename T>
|
|
class DeQuantOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto scale_data = ctx.Attr<float>("Scale");
|
|
auto scale_shift = ctx.Attr<float>("Shift");
|
|
bool with_shift = scale_shift != 0.0f;
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
PADDLE_ENFORCE_NE(scale_data, 0.0f,
|
|
platform::errors::InvalidArgument(
|
|
"Dequantization scale cannot be 0.0"));
|
|
PADDLE_ENFORCE_GE(scale_shift, 0,
|
|
platform::errors::Unimplemented(
|
|
"Dequantization shift must be nonnegative."));
|
|
PADDLE_ENFORCE_LE(
|
|
scale_shift, 255,
|
|
platform::errors::Unimplemented(
|
|
"Dequantization shift must be less than or equal to 255."));
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
const auto& engine = dev_ctx.GetEngine();
|
|
|
|
const T* input_data = input->data<T>();
|
|
float* output_data = output->mutable_data<float>(ctx.GetPlace());
|
|
|
|
float reorder_shift = -scale_shift / scale_data;
|
|
|
|
auto src_tz = paddle::framework::vectorize<int64_t>(input->dims());
|
|
auto dst_tz = paddle::framework::vectorize<int64_t>(output->dims());
|
|
mkldnn::memory::data_type src_dt =
|
|
paddle::framework::ToMKLDNNDataType(input->type());
|
|
MKLDNNMemoryFormat src_fmt = input->format();
|
|
std::string key = platform::CreateKey(platform::ThreadIDasStr(), src_dt,
|
|
src_tz, ctx.OutputName("Output"));
|
|
const std::string key_prim = key + "@r";
|
|
const std::string key_src_mem = key + "@s";
|
|
const std::string key_dst_mem = key + "@d";
|
|
|
|
std::shared_ptr<mkldnn::memory> src_memory;
|
|
std::shared_ptr<mkldnn::memory> dst_memory;
|
|
std::shared_ptr<reorder> reorder_p;
|
|
reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));
|
|
|
|
if (reorder_p == nullptr) {
|
|
mkldnn::primitive_attr attri;
|
|
int mask = 0;
|
|
float reorder_scale = 1. / scale_data;
|
|
attri.set_output_scales(mask, {reorder_scale});
|
|
|
|
if (with_shift) {
|
|
mkldnn::post_ops post_operations;
|
|
post_operations.append_sum();
|
|
attri.set_post_ops(post_operations);
|
|
std::fill(output_data, output_data + output->numel(), reorder_shift);
|
|
}
|
|
|
|
auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
|
|
src_memory = std::make_shared<mkldnn::memory>(
|
|
src_md, engine, to_void_cast<T>(input_data));
|
|
|
|
auto dst_md =
|
|
platform::MKLDNNMemDesc({dst_tz}, memory::data_type::f32,
|
|
platform::MKLDNNFormatForSize(
|
|
dst_tz.size(), MKLDNNMemoryFormat::nchw));
|
|
|
|
dst_memory = std::make_shared<mkldnn::memory>(
|
|
dst_md, engine, to_void_cast<float>(output_data));
|
|
|
|
auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
|
|
new reorder::primitive_desc(*src_memory, *dst_memory, attri));
|
|
reorder_p = std::shared_ptr<reorder>(new reorder(*reorder_pd));
|
|
dev_ctx.SetBlob(key_prim, reorder_p);
|
|
dev_ctx.SetBlob(key_src_mem, src_memory);
|
|
dev_ctx.SetBlob(key_dst_mem, dst_memory);
|
|
} else {
|
|
src_memory = std::static_pointer_cast<mkldnn::memory>(
|
|
dev_ctx.GetBlob(key_src_mem));
|
|
src_memory->set_data_handle(to_void_cast<T>(input_data));
|
|
|
|
dst_memory = std::static_pointer_cast<mkldnn::memory>(
|
|
dev_ctx.GetBlob(key_dst_mem));
|
|
if (with_shift)
|
|
std::fill(output_data, output_data + output->numel(), reorder_shift);
|
|
dst_memory->set_data_handle(output->mutable_data<float>(ctx.GetPlace()));
|
|
}
|
|
|
|
mkldnn::stream astream(engine);
|
|
reorder_p->execute(astream, *src_memory, *dst_memory);
|
|
astream.wait();
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(GetMKLDNNFormat(*dst_memory));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(dequantize, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::DeQuantOpKernel<uint8_t>, ops::DeQuantOpKernel<int8_t>,
|
|
ops::DeQuantOpKernel<paddle::platform::bfloat16>);
|