You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
7.2 KiB
198 lines
7.2 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/sequence_ops/sequence_unpad_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SequenceUnpadOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::NotFound(
|
|
"Input(X) of SequenceUnpadOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Length"), true,
|
|
platform::errors::NotFound(
|
|
"Input(Length) of SequenceUnpadOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput("Out"), true,
|
|
platform::errors::NotFound(
|
|
"Output(Out) of SequenceUnpadOp should not be null."));
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_GE(x_dims.size(), 2,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of Input(X) can't be less than 2. But the "
|
|
"rank we received is %d",
|
|
x_dims.size()));
|
|
|
|
auto len_dims = ctx->GetInputDim("Length");
|
|
PADDLE_ENFORCE_EQ(len_dims.size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of SequenceUnpadOp Input(Length) should "
|
|
"be 1. But the rank we received is %d",
|
|
len_dims.size()));
|
|
PADDLE_ENFORCE_EQ(
|
|
len_dims[0], x_dims[0],
|
|
platform::errors::InvalidArgument(
|
|
"The 1st dimension of SequenceUnpadOp Input(X) and Input(Length)"
|
|
"should be same. But the 1st dimension of "
|
|
"Input(X) is %d, Input(Length) is %d",
|
|
x_dims[0], len_dims[0]));
|
|
|
|
int64_t out_dim_0 = -1;
|
|
if (ctx->IsRuntime()) {
|
|
out_dim_0 = x_dims[0] * x_dims[1];
|
|
}
|
|
|
|
std::vector<int64_t> out_dims_vec{out_dim_0};
|
|
if (x_dims.size() == 2) {
|
|
out_dims_vec.push_back(1);
|
|
} else {
|
|
for (int i = 2; i < x_dims.size(); ++i) {
|
|
out_dims_vec.push_back(x_dims[i]);
|
|
}
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
|
|
if (!ctx->IsRuntime()) {
|
|
ctx->SetLoDLevel("Out", 1);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class SequenceUnpadOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(LoDTensor, default LoDTensor<float>) Input tensor which "
|
|
"contains the padded sequences with equal length.");
|
|
AddInput("Length",
|
|
"(LoDTensor) The input tensor which specifies the actual ength of "
|
|
"sequences after unpadding.");
|
|
AddOutput(
|
|
"Out",
|
|
"(LoDTensor) The output tensor which contains unpadded sequences.");
|
|
AddComment(R"DOC(
|
|
Sequence Unpad Operator
|
|
|
|
This operator removes the padding data in the input sequences and convert
|
|
them into sequences with actual length as output, identitied by lod
|
|
information.
|
|
|
|
Example:
|
|
|
|
Given input tensor Input(X):
|
|
X.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
|
|
[ 6.0, 7.0, 8.0, 9.0, 10.0],
|
|
[11.0, 12.0, 13.0, 14.0, 15.0]],
|
|
`
|
|
in which there are 3 sequences padded to length 5, and the actual length
|
|
specified by Input(Length):
|
|
|
|
Length.data = [2, 3, 4],
|
|
|
|
after unpadding, Output(Out) will be:
|
|
|
|
Out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
|
|
Out.lod = [[0, 2, 5, 9]]
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SequenceUnpadGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("X"), true,
|
|
platform::errors::NotFound(
|
|
"Input(X) of SequenceUnpadGradOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput(framework::GradVarName("Out")), true,
|
|
platform::errors::NotFound(
|
|
"Input(Out@GRAD) of SequenceUnpadGradOp should not be null."));
|
|
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out"));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class SequenceUnpadGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("sequence_unpad_grad");
|
|
op->SetAttrMap(this->Attrs());
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SequenceUnpadGradOpNoNeedBufferVarsInferer,
|
|
"X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(sequence_unpad, ops::SequenceUnpadOp,
|
|
ops::SequenceUnpadOpMaker,
|
|
ops::SequenceUnpadGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::SequenceUnpadGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(sequence_unpad_grad, ops::SequenceUnpadGradOp,
|
|
ops::SequenceUnpadGradOpNoNeedBufferVarsInferer);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_unpad,
|
|
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_unpad_grad,
|
|
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext,
|
|
int64_t>);
|