You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
66 lines
2.4 KiB
66 lines
2.4 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
#include "paddle/fluid/operators/sum_op.h"
|
|
#include <vector>
|
|
#include "paddle/fluid/platform/xpu_header.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using framework::Tensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SumXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto in_vars = context.MultiInputVar("X");
|
|
auto out_var = context.OutputVar("Out");
|
|
auto *out = context.Output<LoDTensor>("Out");
|
|
bool in_place = out_var == in_vars[0];
|
|
int N = in_vars.size();
|
|
PADDLE_ENFORCE_EQ(
|
|
out_var->IsType<framework::LoDTensor>(), true,
|
|
platform::errors::InvalidArgument("XPU only surpport LodTensor"));
|
|
if (!in_place) {
|
|
out->mutable_data<T>(context.GetPlace());
|
|
}
|
|
auto &dev_ctx = context.template device_context<DeviceContext>();
|
|
std::vector<const float *> ptrs(N, nullptr);
|
|
int valid_count = 0;
|
|
for (int i = 0; i < N; ++i) {
|
|
PADDLE_ENFORCE_EQ(
|
|
in_vars[i]->IsType<framework::LoDTensor>(), true,
|
|
platform::errors::InvalidArgument("XPU only surpport LodTensor"));
|
|
auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
|
|
if (in_t.numel() == 0) {
|
|
continue;
|
|
}
|
|
ptrs[valid_count] = reinterpret_cast<const float *>(in_t.data<T>());
|
|
valid_count++;
|
|
}
|
|
int r = xpu::sum_batch(dev_ctx.x_context(), ptrs.data(), out->data<T>(),
|
|
valid_count, out->numel());
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::Fatal("XPU sum kernel error!"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_XPU_KERNEL(
|
|
sum, ops::SumXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
|
#endif
|