You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/detection/yolov3_loss_op.cc

300 lines
13 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/yolov3_loss_op.h"
#include <memory>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class Yolov3LossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("GTBox"),
"Input(GTBox) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
"Input(GTLabel) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Loss"),
"Output(Loss) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("ObjectnessMask"),
"Output(ObjectnessMask) of Yolov3LossOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
"Output(GTMatchMask) of Yolov3LossOp should not be null.");
auto dim_x = ctx->GetInputDim("X");
auto dim_gtbox = ctx->GetInputDim("GTBox");
auto dim_gtlabel = ctx->GetInputDim("GTLabel");
auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
int anchor_num = anchors.size() / 2;
auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
int mask_num = anchor_mask.size();
auto class_num = ctx->Attrs().Get<int>("class_num");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
"Input(X) dim[3] and dim[4] should be euqal.");
PADDLE_ENFORCE_EQ(
dim_x[1], mask_num * (5 + class_num),
"Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
"+ class_num)).");
PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
"Input(GTBox) should be a 3-D tensor");
PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
"Input(GTLabel) should be a 2-D tensor");
PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
"Input(GTBox) and Input(GTLabel) dim[0] should be same");
PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
"Input(GTBox) and Input(GTLabel) dim[1] should be same");
PADDLE_ENFORCE_GT(anchors.size(), 0,
"Attr(anchors) length should be greater then 0.");
PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
"Attr(anchors) length should be even integer.");
for (size_t i = 0; i < anchor_mask.size(); i++) {
PADDLE_ENFORCE_LT(
anchor_mask[i], anchor_num,
"Attr(anchor_mask) should not crossover Attr(anchors).");
}
PADDLE_ENFORCE_GT(class_num, 0,
"Attr(class_num) should be an integer greater then 0.");
if (ctx->HasInput("GTScore")) {
auto dim_gtscore = ctx->GetInputDim("GTScore");
PADDLE_ENFORCE_EQ(dim_gtscore.size(), 2,
"Input(GTScore) should be a 2-D tensor");
PADDLE_ENFORCE_EQ(
dim_gtscore[0], dim_gtbox[0],
"Input(GTBox) and Input(GTScore) dim[0] should be same");
PADDLE_ENFORCE_EQ(
dim_gtscore[1], dim_gtbox[1],
"Input(GTBox) and Input(GTScore) dim[1] should be same");
}
std::vector<int64_t> dim_out({dim_x[0]});
ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
ctx->SetOutputDim("ObjectnessMask", framework::make_ddim(dim_obj_mask));
std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
ctx->SetOutputDim("GTMatchMask", framework::make_ddim(dim_gt_match_mask));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
platform::CPUPlace());
}
};
class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input tensor of YOLOv3 loss operator, "
"This is a 4-D tensor with shape of [N, C, H, W]."
"H and W should be same, and the second dimention(C) stores"
"box locations, confidence score and classification one-hot"
"keys of each anchor box");
AddInput("GTBox",
"The input tensor of ground truth boxes, "
"This is a 3-D tensor with shape of [N, max_box_num, 5], "
"max_box_num is the max number of boxes in each image, "
"In the third dimention, stores x, y, w, h coordinates, "
"x, y is the center cordinate of boxes and w, h is the "
"width and height and x, y, w, h should be divided by "
"input image height to scale to [0, 1].");
AddInput("GTLabel",
"The input tensor of ground truth label, "
"This is a 2-D tensor with shape of [N, max_box_num], "
"and each element should be an integer to indicate the "
"box class id.");
AddInput("GTScore",
"The score of GTLabel, This is a 2-D tensor in same shape "
"GTLabel, and score values should in range (0, 1). This "
"input is for GTLabel score can be not 1.0 in image mixup "
"augmentation.")
.AsDispensable();
AddOutput("Loss",
"The output yolov3 loss tensor, "
"This is a 1-D tensor with shape of [N]");
AddOutput("ObjectnessMask",
"This is an intermediate tensor with shape of [N, M, H, W], "
"M is the number of anchor masks. This parameter caches the "
"mask for calculate objectness loss in gradient kernel.")
.AsIntermediate();
AddOutput("GTMatchMask",
"This is an intermediate tensor with shape of [N, B], "
"B is the max box number of GT boxes. This parameter caches "
"matched mask index of each GT boxes for gradient calculate.")
.AsIntermediate();
AddAttr<int>("class_num", "The number of classes to predict.");
AddAttr<std::vector<int>>("anchors",
"The anchor width and height, "
"it will be parsed pair by pair.")
.SetDefault(std::vector<int>{});
AddAttr<std::vector<int>>("anchor_mask",
"The mask index of anchors used in "
"current YOLOv3 loss calculation.")
.SetDefault(std::vector<int>{});
AddAttr<int>("downsample_ratio",
"The downsample ratio from network input to YOLOv3 loss "
"input, so 32, 16, 8 should be set for the first, second, "
"and thrid YOLOv3 loss operators.")
.SetDefault(32);
AddAttr<float>("ignore_thresh",
"The ignore threshold to ignore confidence loss.")
.SetDefault(0.7);
AddAttr<bool>("use_label_smooth",
"Whether to use label smooth. Default True.")
.SetDefault(true);
AddComment(R"DOC(
This operator generates yolov3 loss based on given predict result and ground
truth boxes.
The output of previous network is in shape [N, C, H, W], while H and W
should be the same, H and W specify the grid size, each grid point predict
given number bounding boxes, this given number, which following will be represented as S,
is specified by the number of anchor clusters in each scale. In the second dimension(the channel
dimension), C should be equal to S * (class_num + 5), class_num is the object
category number of source dataset(such as 80 in coco dataset), so in the
second(channel) dimension, apart from 4 box location coordinates x, y, w, h,
also includes confidence score of the box and class one-hot key of each anchor box.
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box predictions
should be as follows:
$$
b_x = \\sigma(t_x) + c_x
$$
$$
b_y = \\sigma(t_y) + c_y
$$
$$
b_w = p_w e^{t_w}
$$
$$
b_h = p_h e^{t_h}
$$
In the equation above, :math:`c_x, c_y` is the left top corner of current grid
and :math:`p_w, p_h` is specified by anchors.
As for confidence score, it is the logistic regression value of IoU between
anchor boxes and ground truth boxes, the score of the anchor box which has
the max IoU should be 1, and if the anchor box has IoU bigger than ignore
thresh, the confidence score loss of this anchor box will be ignored.
Therefore, the yolov3 loss consists of three major parts: box location loss,
objectness loss and classification loss. The L1 loss is used for
box coordinates (w, h), sigmoid cross entropy loss is used for box
coordinates (x, y), objectness loss and classification loss.
Each groud truth box finds a best matching anchor box in all anchors.
Prediction of this anchor box will incur all three parts of losses, and
prediction of anchor boxes with no GT box matched will only incur objectness
loss.
In order to trade off box coordinate losses between big boxes and small
boxes, box coordinate losses will be mutiplied by scale weight, which is
calculated as follows.
$$
weight_{box} = 2.0 - t_w * t_h
$$
Final loss will be represented as follows.
$$
loss = (loss_{xy} + loss_{wh}) * weight_{box}
+ loss_{conf} + loss_{class}
$$
While :attr:`use_label_smooth` is set to be :attr:`True`, the classification
target will be smoothed when calculating classification loss, target of
positive samples will be smoothed to :math:`1.0 - 1.0 / class\_num` and target of
negetive samples will be smoothed to :math:`1.0 / class\_num`.
While :attr:`GTScore` is given, which means the mixup score of ground truth
boxes, all losses incured by a ground truth box will be multiplied by its
mixup score.
)DOC");
}
};
class Yolov3LossOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
"Input(Loss@GRAD) should not be null");
auto dim_x = ctx->GetInputDim("X");
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
platform::CPUPlace());
}
};
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto* op = new framework::OpDesc();
op->SetType("yolov3_loss_grad");
op->SetInput("X", Input("X"));
op->SetInput("GTBox", Input("GTBox"));
op->SetInput("GTLabel", Input("GTLabel"));
op->SetInput("GTScore", Input("GTScore"));
op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
op->SetInput("ObjectnessMask", Output("ObjectnessMask"));
op->SetInput("GTMatchMask", Output("GTMatchMask"));
op->SetAttrMap(Attrs());
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetOutput(framework::GradVarName("GTBox"), {});
op->SetOutput(framework::GradVarName("GTLabel"), {});
op->SetOutput(framework::GradVarName("GTScore"), {});
return std::unique_ptr<framework::OpDesc>(op);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
ops::Yolov3LossGradMaker);
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
ops::Yolov3LossGradKernel<double>);