You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
5.0 KiB
145 lines
5.0 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <algorithm>
|
|
#include <cstdlib>
|
|
#include <memory>
|
|
#include <random>
|
|
#include "gtest/gtest.h"
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/framework/scope.h"
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
#include "paddle/fluid/platform/place.h"
|
|
|
|
USE_OP(elementwise_add);
|
|
USE_OP_DEVICE_KERNEL(elementwise_add, MKLDNN);
|
|
USE_OP(relu);
|
|
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
|
|
USE_OP(softmax);
|
|
USE_OP_DEVICE_KERNEL(softmax, MKLDNN);
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
struct InputVars {
|
|
std::string name;
|
|
framework::LoDTensor *tensor;
|
|
};
|
|
|
|
template <typename T>
|
|
bool TestMain(const platform::Place &place, const std::string &op_type,
|
|
const framework::DDim &dims, const int num_inputs) {
|
|
framework::Scope scope;
|
|
|
|
std::vector<InputVars> input_names = {
|
|
{"x", scope.Var("x")->GetMutable<framework::LoDTensor>()},
|
|
{"x1", num_inputs > 1
|
|
? scope.Var("x1")->GetMutable<framework::LoDTensor>()
|
|
: nullptr},
|
|
{"x2", num_inputs > 2
|
|
? scope.Var("x2")->GetMutable<framework::LoDTensor>()
|
|
: nullptr},
|
|
{"x3", num_inputs > 3
|
|
? scope.Var("x3")->GetMutable<framework::LoDTensor>()
|
|
: nullptr},
|
|
{"x4", num_inputs > 4
|
|
? scope.Var("x4")->GetMutable<framework::LoDTensor>()
|
|
: nullptr}};
|
|
auto *y = scope.Var("y")->GetMutable<framework::LoDTensor>();
|
|
|
|
// Initialize input data
|
|
std::uniform_real_distribution<T> dist(static_cast<T>(10.0),
|
|
static_cast<T>(20.0));
|
|
std::mt19937 engine;
|
|
size_t numel = static_cast<size_t>(framework::product(dims));
|
|
for (int i = 0; i < num_inputs; ++i) {
|
|
input_names[i].tensor->Resize(dims);
|
|
auto data_ptr = input_names[i].tensor->mutable_data<T>(place);
|
|
for (size_t i = 0; i < numel; ++i) {
|
|
data_ptr[i] = dist(engine);
|
|
}
|
|
}
|
|
|
|
// Initialize output
|
|
y->Resize(dims);
|
|
auto y_ptr = y->mutable_data<T>(place);
|
|
for (size_t i = 0; i < numel; ++i) {
|
|
y_ptr[i] = static_cast<T>(0);
|
|
}
|
|
|
|
auto &pool = platform::DeviceContextPool::Instance();
|
|
|
|
// Out of place (reference) computation
|
|
auto op_ref = num_inputs > 1 ? framework::OpRegistry::CreateOp(
|
|
op_type, {{"X", {"x"}}, {"Y", {"x1"}}},
|
|
{{"Out", {"y"}}}, {{"use_mkldnn", {true}}})
|
|
: framework::OpRegistry::CreateOp(
|
|
op_type, {{"X", {"x"}}}, {{"Out", {"y"}}},
|
|
{{"use_mkldnn", {true}}});
|
|
|
|
op_ref->Run(scope, place);
|
|
pool.Get(place)->Wait();
|
|
|
|
// Get reference (out of place) result
|
|
auto &ref_tensor = scope.FindVar("y")->Get<framework::LoDTensor>();
|
|
|
|
// In-place (to be tested) computation
|
|
auto op = num_inputs > 1 ? framework::OpRegistry::CreateOp(
|
|
op_type, {{"X", {"x"}}, {"Y", {"x1"}}},
|
|
{{"Out", {"x"}}}, {{"use_mkldnn", {true}}})
|
|
: framework::OpRegistry::CreateOp(
|
|
op_type, {{"X", {"x"}}}, {{"Out", {"x"}}},
|
|
{{"use_mkldnn", {true}}});
|
|
|
|
op->Run(scope, place);
|
|
platform::DeviceContextPool::Instance().Get(place)->Wait();
|
|
|
|
// Get in-place result
|
|
auto &out_tensor = scope.FindVar("x")->Get<framework::LoDTensor>();
|
|
PADDLE_ENFORCE_EQ(
|
|
&out_tensor, input_names[0].tensor,
|
|
platform::errors::InvalidArgument(
|
|
"Input and output vars should share tensor for In-place test"));
|
|
|
|
// compare results
|
|
auto *ref_ptr = ref_tensor.data<T>();
|
|
auto *out_ptr = out_tensor.data<T>();
|
|
bool is_equal = std::equal(out_ptr, out_ptr + numel, ref_ptr);
|
|
return is_equal;
|
|
}
|
|
|
|
TEST(test_softmax_inplace, cpu_place) {
|
|
framework::DDim dims({32, 64});
|
|
platform::CPUPlace p;
|
|
ASSERT_TRUE(TestMain<float>(p, "softmax", dims, 1));
|
|
}
|
|
|
|
TEST(test_elementwise_add_inplace, cpu_place) {
|
|
framework::DDim dims({1, 12, 20, 20});
|
|
platform::CPUPlace p;
|
|
ASSERT_TRUE(TestMain<float>(p, "elementwise_add", dims, 2));
|
|
}
|
|
|
|
TEST(test_relu_inplace, cpu_place) {
|
|
framework::DDim dims({1, 12, 20, 20});
|
|
platform::CPUPlace p;
|
|
ASSERT_TRUE(TestMain<float>(p, "relu", dims, 1));
|
|
}
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|