You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
518 lines
20 KiB
518 lines
20 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/gather.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);
|
|
|
|
static void AppendProposals(Tensor *dst, int64_t offset, const Tensor &src) {
|
|
auto *out_data = dst->data<void>();
|
|
auto *to_add_data = src.data<void>();
|
|
size_t size_of_t = framework::SizeOfType(src.type());
|
|
offset *= size_of_t;
|
|
std::memcpy(
|
|
reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(out_data) + offset),
|
|
to_add_data, src.numel() * size_of_t);
|
|
}
|
|
|
|
class GenerateProposalsOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Scores"), true,
|
|
platform::errors::NotFound("Input(Scores) shouldn't be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("BboxDeltas"), true,
|
|
platform::errors::NotFound("Input(BboxDeltas) shouldn't be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("ImInfo"), true,
|
|
platform::errors::NotFound("Input(ImInfo) shouldn't be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Anchors"), true,
|
|
platform::errors::NotFound("Input(Anchors) shouldn't be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Variances"), true,
|
|
platform::errors::NotFound("Input(Variances) shouldn't be null."));
|
|
|
|
ctx->SetOutputDim("RpnRois", {-1, 4});
|
|
ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Anchors"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
static inline void BoxCoder(const platform::DeviceContext &ctx,
|
|
Tensor *all_anchors, Tensor *bbox_deltas,
|
|
Tensor *variances, Tensor *proposals) {
|
|
T *proposals_data = proposals->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int64_t row = all_anchors->dims()[0];
|
|
int64_t len = all_anchors->dims()[1];
|
|
|
|
auto *bbox_deltas_data = bbox_deltas->data<T>();
|
|
auto *anchor_data = all_anchors->data<T>();
|
|
const T *variances_data = nullptr;
|
|
if (variances) {
|
|
variances_data = variances->data<T>();
|
|
}
|
|
|
|
for (int64_t i = 0; i < row; ++i) {
|
|
T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
|
|
T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;
|
|
|
|
T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
|
|
T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;
|
|
|
|
T bbox_center_x = 0, bbox_center_y = 0;
|
|
T bbox_width = 0, bbox_height = 0;
|
|
|
|
if (variances) {
|
|
bbox_center_x =
|
|
variances_data[i * len] * bbox_deltas_data[i * len] * anchor_width +
|
|
anchor_center_x;
|
|
bbox_center_y = variances_data[i * len + 1] *
|
|
bbox_deltas_data[i * len + 1] * anchor_height +
|
|
anchor_center_y;
|
|
bbox_width = std::exp(std::min<T>(variances_data[i * len + 2] *
|
|
bbox_deltas_data[i * len + 2],
|
|
kBBoxClipDefault)) *
|
|
anchor_width;
|
|
bbox_height = std::exp(std::min<T>(variances_data[i * len + 3] *
|
|
bbox_deltas_data[i * len + 3],
|
|
kBBoxClipDefault)) *
|
|
anchor_height;
|
|
} else {
|
|
bbox_center_x =
|
|
bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
|
|
bbox_center_y =
|
|
bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
|
|
bbox_width = std::exp(std::min<T>(bbox_deltas_data[i * len + 2],
|
|
kBBoxClipDefault)) *
|
|
anchor_width;
|
|
bbox_height = std::exp(std::min<T>(bbox_deltas_data[i * len + 3],
|
|
kBBoxClipDefault)) *
|
|
anchor_height;
|
|
}
|
|
|
|
proposals_data[i * len] = bbox_center_x - bbox_width / 2;
|
|
proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
|
|
proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1;
|
|
proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1;
|
|
}
|
|
// return proposals;
|
|
}
|
|
|
|
template <class T>
|
|
static inline void ClipTiledBoxes(const platform::DeviceContext &ctx,
|
|
const Tensor &im_info, Tensor *boxes) {
|
|
T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
|
|
const T *im_info_data = im_info.data<T>();
|
|
T zero(0);
|
|
for (int64_t i = 0; i < boxes->numel(); ++i) {
|
|
if (i % 4 == 0) {
|
|
boxes_data[i] =
|
|
std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
|
|
} else if (i % 4 == 1) {
|
|
boxes_data[i] =
|
|
std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
|
|
} else if (i % 4 == 2) {
|
|
boxes_data[i] =
|
|
std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
|
|
} else {
|
|
boxes_data[i] =
|
|
std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
static inline void FilterBoxes(const platform::DeviceContext &ctx,
|
|
Tensor *boxes, float min_size,
|
|
const Tensor &im_info, Tensor *keep) {
|
|
const T *im_info_data = im_info.data<T>();
|
|
T *boxes_data = boxes->mutable_data<T>(ctx.GetPlace());
|
|
T im_scale = im_info_data[2];
|
|
keep->Resize({boxes->dims()[0]});
|
|
min_size = std::max(min_size, 1.0f);
|
|
int *keep_data = keep->mutable_data<int>(ctx.GetPlace());
|
|
|
|
int keep_len = 0;
|
|
for (int i = 0; i < boxes->dims()[0]; ++i) {
|
|
T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
|
|
T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
|
|
T ws_origin_scale =
|
|
(boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
|
|
T hs_origin_scale =
|
|
(boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
|
|
T x_ctr = boxes_data[4 * i] + ws / 2;
|
|
T y_ctr = boxes_data[4 * i + 1] + hs / 2;
|
|
if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
|
|
x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
|
|
keep_data[keep_len++] = i;
|
|
}
|
|
}
|
|
keep->Resize({keep_len});
|
|
}
|
|
|
|
template <class T>
|
|
static inline std::vector<std::pair<T, int>> GetSortedScoreIndex(
|
|
const std::vector<T> &scores) {
|
|
std::vector<std::pair<T, int>> sorted_indices;
|
|
sorted_indices.reserve(scores.size());
|
|
for (size_t i = 0; i < scores.size(); ++i) {
|
|
sorted_indices.emplace_back(scores[i], i);
|
|
}
|
|
// Sort the score pair according to the scores in descending order
|
|
std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
|
|
[](const std::pair<T, int> &a, const std::pair<T, int> &b) {
|
|
return a.first < b.first;
|
|
});
|
|
return sorted_indices;
|
|
}
|
|
|
|
template <class T>
|
|
static inline T BBoxArea(const T *box, bool normalized) {
|
|
if (box[2] < box[0] || box[3] < box[1]) {
|
|
// If coordinate values are is invalid
|
|
// (e.g. xmax < xmin or ymax < ymin), return 0.
|
|
return static_cast<T>(0.);
|
|
} else {
|
|
const T w = box[2] - box[0];
|
|
const T h = box[3] - box[1];
|
|
if (normalized) {
|
|
return w * h;
|
|
} else {
|
|
// If coordinate values are not within range [0, 1].
|
|
return (w + 1) * (h + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
|
|
if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
|
|
box2[3] < box1[1]) {
|
|
return static_cast<T>(0.);
|
|
} else {
|
|
const T inter_xmin = std::max(box1[0], box2[0]);
|
|
const T inter_ymin = std::max(box1[1], box2[1]);
|
|
const T inter_xmax = std::min(box1[2], box2[2]);
|
|
const T inter_ymax = std::min(box1[3], box2[3]);
|
|
const T inter_w = std::max(T(0), inter_xmax - inter_xmin + 1);
|
|
const T inter_h = std::max(T(0), inter_ymax - inter_ymin + 1);
|
|
const T inter_area = inter_w * inter_h;
|
|
const T bbox1_area = BBoxArea<T>(box1, normalized);
|
|
const T bbox2_area = BBoxArea<T>(box2, normalized);
|
|
return inter_area / (bbox1_area + bbox2_area - inter_area);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static inline Tensor VectorToTensor(const std::vector<T> &selected_indices,
|
|
int selected_num) {
|
|
Tensor keep_nms;
|
|
keep_nms.Resize({selected_num});
|
|
auto *keep_data = keep_nms.mutable_data<T>(platform::CPUPlace());
|
|
for (int i = 0; i < selected_num; ++i) {
|
|
keep_data[i] = selected_indices[i];
|
|
}
|
|
return keep_nms;
|
|
}
|
|
|
|
template <class T>
|
|
static inline Tensor NMS(const platform::DeviceContext &ctx, Tensor *bbox,
|
|
Tensor *scores, T nms_threshold, float eta) {
|
|
int64_t num_boxes = bbox->dims()[0];
|
|
// 4: [xmin ymin xmax ymax]
|
|
int64_t box_size = bbox->dims()[1];
|
|
|
|
std::vector<T> scores_data(num_boxes);
|
|
std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
|
|
std::vector<std::pair<T, int>> sorted_indices =
|
|
GetSortedScoreIndex<T>(scores_data);
|
|
|
|
std::vector<int> selected_indices;
|
|
int selected_num = 0;
|
|
T adaptive_threshold = nms_threshold;
|
|
const T *bbox_data = bbox->data<T>();
|
|
while (sorted_indices.size() != 0) {
|
|
int idx = sorted_indices.back().second;
|
|
bool flag = true;
|
|
for (int kept_idx : selected_indices) {
|
|
if (flag) {
|
|
T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
|
|
bbox_data + kept_idx * box_size, false);
|
|
flag = (overlap <= adaptive_threshold);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (flag) {
|
|
selected_indices.push_back(idx);
|
|
++selected_num;
|
|
}
|
|
sorted_indices.erase(sorted_indices.end() - 1);
|
|
if (flag && eta < 1 && adaptive_threshold > 0.5) {
|
|
adaptive_threshold *= eta;
|
|
}
|
|
}
|
|
return VectorToTensor(selected_indices, selected_num);
|
|
}
|
|
|
|
template <typename T>
|
|
class GenerateProposalsKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto *scores = context.Input<Tensor>("Scores");
|
|
auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
|
|
auto *im_info = context.Input<Tensor>("ImInfo");
|
|
auto anchors = GET_DATA_SAFELY(context.Input<Tensor>("Anchors"), "Input",
|
|
"Anchors", "GenerateProposals");
|
|
auto variances = GET_DATA_SAFELY(context.Input<Tensor>("Variances"),
|
|
"Input", "Variances", "GenerateProposals");
|
|
|
|
auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
|
|
auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");
|
|
|
|
int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
|
|
int post_nms_top_n = context.Attr<int>("post_nms_topN");
|
|
float nms_thresh = context.Attr<float>("nms_thresh");
|
|
float min_size = context.Attr<float>("min_size");
|
|
float eta = context.Attr<float>("eta");
|
|
|
|
auto &dev_ctx =
|
|
context.template device_context<platform::CPUDeviceContext>();
|
|
|
|
auto &scores_dim = scores->dims();
|
|
int64_t num = scores_dim[0];
|
|
int64_t c_score = scores_dim[1];
|
|
int64_t h_score = scores_dim[2];
|
|
int64_t w_score = scores_dim[3];
|
|
|
|
auto &bbox_dim = bbox_deltas->dims();
|
|
int64_t c_bbox = bbox_dim[1];
|
|
int64_t h_bbox = bbox_dim[2];
|
|
int64_t w_bbox = bbox_dim[3];
|
|
|
|
rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
|
|
context.GetPlace());
|
|
rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
|
|
|
|
Tensor bbox_deltas_swap, scores_swap;
|
|
bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
|
|
dev_ctx.GetPlace());
|
|
scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
|
|
dev_ctx.GetPlace());
|
|
|
|
math::Transpose<platform::CPUDeviceContext, T, 4> trans;
|
|
std::vector<int> axis = {0, 2, 3, 1};
|
|
trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
|
|
trans(dev_ctx, *scores, &scores_swap, axis);
|
|
|
|
framework::LoD lod;
|
|
lod.resize(1);
|
|
auto &lod0 = lod[0];
|
|
lod0.push_back(0);
|
|
anchors.Resize({anchors.numel() / 4, 4});
|
|
variances.Resize({variances.numel() / 4, 4});
|
|
std::vector<int64_t> tmp_lod;
|
|
|
|
int64_t num_proposals = 0;
|
|
for (int64_t i = 0; i < num; ++i) {
|
|
Tensor im_info_slice = im_info->Slice(i, i + 1);
|
|
Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
|
|
Tensor scores_slice = scores_swap.Slice(i, i + 1);
|
|
|
|
bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
|
|
scores_slice.Resize({h_score * w_score * c_score, 1});
|
|
|
|
std::pair<Tensor, Tensor> tensor_pair =
|
|
ProposalForOneImage(dev_ctx, im_info_slice, anchors, variances,
|
|
bbox_deltas_slice, scores_slice, pre_nms_top_n,
|
|
post_nms_top_n, nms_thresh, min_size, eta);
|
|
Tensor &proposals = tensor_pair.first;
|
|
Tensor &scores = tensor_pair.second;
|
|
|
|
AppendProposals(rpn_rois, 4 * num_proposals, proposals);
|
|
AppendProposals(rpn_roi_probs, num_proposals, scores);
|
|
num_proposals += proposals.dims()[0];
|
|
lod0.push_back(num_proposals);
|
|
tmp_lod.push_back(num_proposals);
|
|
}
|
|
if (context.HasOutput("RpnRoisLod")) {
|
|
auto *rpn_rois_lod = context.Output<Tensor>("RpnRoisLod");
|
|
rpn_rois_lod->mutable_data<int64_t>({num}, context.GetPlace());
|
|
int64_t *lod_data = rpn_rois_lod->data<int64_t>();
|
|
for (int i = 0; i < num; i++) {
|
|
lod_data[i] = tmp_lod[i];
|
|
}
|
|
rpn_rois_lod->Resize({num});
|
|
}
|
|
rpn_rois->set_lod(lod);
|
|
rpn_roi_probs->set_lod(lod);
|
|
rpn_rois->Resize({num_proposals, 4});
|
|
rpn_roi_probs->Resize({num_proposals, 1});
|
|
}
|
|
|
|
std::pair<Tensor, Tensor> ProposalForOneImage(
|
|
const platform::CPUDeviceContext &ctx, const Tensor &im_info_slice,
|
|
const Tensor &anchors, const Tensor &variances,
|
|
const Tensor &bbox_deltas_slice, // [M, 4]
|
|
const Tensor &scores_slice, // [N, 1]
|
|
int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
|
|
float eta) const {
|
|
auto *scores_data = scores_slice.data<T>();
|
|
|
|
// Sort index
|
|
Tensor index_t;
|
|
index_t.Resize({scores_slice.numel()});
|
|
int *index = index_t.mutable_data<int>(ctx.GetPlace());
|
|
for (int i = 0; i < scores_slice.numel(); ++i) {
|
|
index[i] = i;
|
|
}
|
|
auto compare = [scores_data](const int64_t &i, const int64_t &j) {
|
|
return scores_data[i] > scores_data[j];
|
|
};
|
|
|
|
if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
|
|
std::sort(index, index + scores_slice.numel(), compare);
|
|
} else {
|
|
std::nth_element(index, index + pre_nms_top_n,
|
|
index + scores_slice.numel(), compare);
|
|
index_t.Resize({pre_nms_top_n});
|
|
}
|
|
|
|
Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
|
|
scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
|
|
bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
|
|
CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
|
|
CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
|
|
CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
|
|
CPUGather<T>(ctx, variances, index_t, &var_sel);
|
|
|
|
Tensor proposals;
|
|
proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
|
|
BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);
|
|
|
|
ClipTiledBoxes<T>(ctx, im_info_slice, &proposals);
|
|
|
|
Tensor keep;
|
|
FilterBoxes<T>(ctx, &proposals, min_size, im_info_slice, &keep);
|
|
|
|
Tensor scores_filter;
|
|
bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
|
|
scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
|
|
CPUGather<T>(ctx, proposals, keep, &bbox_sel);
|
|
CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
|
|
if (nms_thresh <= 0) {
|
|
return std::make_pair(bbox_sel, scores_filter);
|
|
}
|
|
|
|
Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);
|
|
|
|
if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
|
|
keep_nms.Resize({post_nms_top_n});
|
|
}
|
|
|
|
proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
|
|
scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
|
|
CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
|
|
CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);
|
|
|
|
return std::make_pair(proposals, scores_sel);
|
|
}
|
|
};
|
|
|
|
class GenerateProposalsOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Scores",
|
|
"(Tensor) The scores from conv is in shape (N, A, H, W), "
|
|
"N is batch size, A is number of anchors, "
|
|
"H and W are height and width of the feature map");
|
|
AddInput("BboxDeltas",
|
|
"(Tensor) Bounding box deltas from conv is in "
|
|
"shape (N, 4*A, H, W).");
|
|
AddInput("ImInfo",
|
|
"(Tensor) Information for image reshape is in shape (N, 3), "
|
|
"in format (height, width, scale)");
|
|
AddInput("Anchors",
|
|
"(Tensor) Bounding box anchors from anchor_generator_op "
|
|
"is in shape (A, H, W, 4).");
|
|
AddInput("Variances",
|
|
"(Tensor) Bounding box variances with same shape as `Anchors`.");
|
|
|
|
AddOutput("RpnRois",
|
|
"(LoDTensor), Output proposals with shape (rois_num, 4).");
|
|
AddOutput("RpnRoiProbs",
|
|
"(LoDTensor) Scores of proposals with shape (rois_num, 1).");
|
|
AddOutput("RpnRoisLod", "(Tensor), rpn rois's lod info").AsDispensable();
|
|
AddAttr<int>("pre_nms_topN",
|
|
"Number of top scoring RPN proposals to keep before "
|
|
"applying NMS.");
|
|
AddAttr<int>("post_nms_topN",
|
|
"Number of top scoring RPN proposals to keep after "
|
|
"applying NMS");
|
|
AddAttr<float>("nms_thresh", "NMS threshold used on RPN proposals.");
|
|
AddAttr<float>("min_size",
|
|
"Proposal height and width both need to be greater "
|
|
"than this min_size.");
|
|
AddAttr<float>("eta", "The parameter for adaptive NMS.");
|
|
AddComment(R"DOC(
|
|
This operator Generate bounding box proposals for Faster RCNN.
|
|
The propoasls are generated for a list of images based on image
|
|
score 'Scores', bounding box regression result 'BboxDeltas' as
|
|
well as predefined bounding box shapes 'anchors'. Greedy
|
|
non-maximum suppression is applied to generate the final bounding
|
|
boxes.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
generate_proposals, ops::GenerateProposalsOp, ops::GenerateProposalsOpMaker,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OP_CPU_KERNEL(generate_proposals, ops::GenerateProposalsKernel<float>,
|
|
ops::GenerateProposalsKernel<double>);
|