You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_full_op.py

122 lines
4.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import paddle
from paddle.fluid import compiler, Program, program_guard
# Test python API
class TestFullAPI(unittest.TestCase):
def test_api(self):
positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
shape_tensor_int32 = fluid.data(
name="shape_tensor_int32", shape=[2], dtype="int32")
shape_tensor_int64 = fluid.data(
name="shape_tensor_int64", shape=[2], dtype="int64")
out_1 = paddle.full(shape=[1, 2], dtype="float32", fill_value=1.1)
out_2 = paddle.full(
shape=[1, positive_2_int32], dtype="float32", fill_value=1.1)
out_3 = paddle.full(
shape=[1, positive_2_int64], dtype="float32", fill_value=1.1)
out_4 = paddle.full(
shape=shape_tensor_int32, dtype="float32", fill_value=1.2)
out_5 = paddle.full(
shape=shape_tensor_int64, dtype="float32", fill_value=1.1)
out_6 = paddle.full(
shape=shape_tensor_int64, dtype=np.float32, fill_value=1.1)
val = fluid.layers.fill_constant(shape=[1], dtype=np.float32, value=1.1)
out_7 = paddle.full(
shape=shape_tensor_int64, dtype=np.float32, fill_value=val)
exe = fluid.Executor(place=fluid.CPUPlace())
res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
fluid.default_main_program(),
feed={
"shape_tensor_int32": np.array([1, 2]).astype("int32"),
"shape_tensor_int64": np.array([1, 2]).astype("int64"),
},
fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_4, np.full([1, 2], 1.2, dtype="float32"))
assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
class TestFullOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
#for ci coverage
self.assertRaises(
ValueError, paddle.full, shape=[1], fill_value=5, dtype='uint4')
# The argument dtype of full must be one of bool, float16,
#float32, float64, int32 or int64
self.assertRaises(
TypeError, paddle.full, shape=[1], fill_value=5, dtype='uint8')
# The argument shape's type of full_op must be list, tuple or Variable.
def test_shape_type():
paddle.full(shape=1, dtype="float32", fill_value=1)
self.assertRaises(TypeError, test_shape_type)
# The argument shape's size of full_op must not be 0.
def test_shape_size():
paddle.full(shape=[], dtype="float32", fill_value=1)
self.assertRaises(AssertionError, test_shape_size)
# The shape dtype of full op must be int32 or int64.
def test_shape_tensor_dtype():
shape = fluid.data(
name="shape_tensor", shape=[2], dtype="float32")
paddle.full(shape=shape, dtype="float32", fill_value=1)
self.assertRaises(TypeError, test_shape_tensor_dtype)
def test_shape_tensor_list_dtype():
shape = fluid.data(
name="shape_tensor_list", shape=[1], dtype="bool")
paddle.full(shape=[shape, 2], dtype="float32", fill_value=1)
self.assertRaises(TypeError, test_shape_tensor_list_dtype)
if __name__ == "__main__":
unittest.main()