You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_gather_op.py

143 lines
4.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
class TestGatherOp(OpTest):
def setUp(self):
self.op_type = "gather"
self.config()
xnp = np.random.random(self.x_shape).astype(self.x_type)
self.inputs = {
'X': xnp,
'Index': np.array(self.index).astype(self.index_type)
}
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def config(self):
"""
For multi-dimension input
"""
self.x_shape = (10, 20)
self.x_type = "float64"
self.index = [1, 3, 5]
self.index_type = "int32"
class TestCase1(TestGatherOp):
def config(self):
"""
For one dimension input
"""
self.x_shape = (100)
self.x_type = "float64"
self.index = [1, 3, 5]
self.index_type = "int32"
class TestCase2(TestGatherOp):
def config(self):
"""
For int64_t index type
"""
self.x_shape = (100)
self.x_type = "float64"
self.index = [1, 3, 5]
self.index_type = "int64"
class TestCase3(TestGatherOp):
def config(self):
"""
For other input type
"""
self.x_shape = (10, 20)
self.x_type = "float64"
self.index = [1, 3, 5]
self.index_type = "int64"
class TestCase4(TestGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'overwrite': False}
self.x_type = "double"
self.index = [1, 1]
self.index_type = "int32"
class TestCase5(TestGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'overwrite': False}
self.x_type = "float64"
self.index = [1, 1, 3]
self.index_type = "int32"
class TestCase6(TestGatherOp):
def config(self):
self.x_shape = (10, 20)
self.attrs = {'overwrite': True}
self.x_type = "float64"
self.index = [1, 3]
self.index_type = "int32"
class API_TestGather(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data1 = fluid.layers.data('data1', shape=[-1, 2], dtype='float64')
index = fluid.layers.data('index', shape=[-1, 1], dtype='float64')
out = paddle.gather(data1, index)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
input = np.array([[1, 2], [3, 4], [5, 6]])
index_1 = np.array([1, 2])
result, = exe.run(feed={"data1": input,
"index": index_1},
fetch_list=[out])
expected_output = np.array([[3, 4], [5, 6]])
self.assertTrue(np.allclose(result, expected_output))
class API_TestDygraphGather(unittest.TestCase):
def test_out(self):
with fluid.dygraph.guard():
input_1 = np.array([[1, 2], [3, 4], [5, 6]])
index_1 = np.array([1, 2])
input = fluid.dygraph.to_variable(input_1)
index = fluid.dygraph.to_variable(index_1)
output = paddle.fluid.layers.gather(input, index)
output_np = output.numpy()
expected_output = np.array([[3, 4], [5, 6]])
self.assertTrue(np.allclose(output_np, expected_output))
if __name__ == "__main__":
unittest.main()