You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_log_softmax.py

108 lines
3.5 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.nn as nn
import paddle.nn.functional as functional
def stable_softmax(x):
shiftx = (x - np.max(x))
exps = np.exp(shiftx)
return exps / np.sum(exps)
def ref_log_softmax(x, axis=None, dtype=None):
x_t = x.copy()
if dtype is not None:
x_t = x_t.astype(dtype)
if axis is None:
axis = -1
out = np.apply_along_axis(stable_softmax, axis, x_t)
return np.log(out)
class TestNNLogSoftmaxAPI(unittest.TestCase):
def setUp(self):
self.init_data()
def init_data(self):
self.x_shape = [2, 3, 4, 5]
self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
def check_api(self, place=fluid.CPUPlace(), axis=None):
ref_out = ref_log_softmax(self.x, axis)
main_program = fluid.Program()
mylogsoftmax = nn.LogSoftmax(axis)
with fluid.program_guard(main_program):
x = fluid.data(name='x', shape=self.x_shape)
y = mylogsoftmax(x)
exe = fluid.Executor(place)
out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
self.assertTrue(np.allclose(out[0], ref_out))
with fluid.dygraph.guard(place):
x = fluid.dygraph.to_variable(self.x)
y = mylogsoftmax(x)
self.assertTrue(np.allclose(y.numpy(), ref_out))
def test_check_api(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
for axis in [None, 2]:
self.check_api(place, axis)
class TestNNFunctionalLogSoftmaxAPI(unittest.TestCase):
def setUp(self):
self.init_data()
def init_data(self):
self.x_shape = [2, 3, 4, 5]
self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
def check_api(self, place=fluid.CPUPlace(), axis=None, dtype=None):
ref_out = ref_log_softmax(self.x, axis, dtype)
main_program = fluid.Program()
mylogsoftmax = nn.LogSoftmax(axis)
with fluid.program_guard(main_program):
x = fluid.data(name='x', shape=self.x_shape)
y = functional.log_softmax(x, axis, dtype)
exe = fluid.Executor(place)
out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
self.assertTrue(np.allclose(out[0], ref_out))
with fluid.dygraph.guard(place):
x = fluid.dygraph.to_variable(self.x)
y = functional.log_softmax(x, axis, dtype)
self.assertTrue(np.allclose(y.numpy(), ref_out))
def test_check_api(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
self.check_api(place, None, None)
self.check_api(place, None, np.float64)
if __name__ == "__main__":
unittest.main()