You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/trainer/tests/testPyDataWrapper.py

155 lines
4.5 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
from paddle.trainer.PyDataProviderWrapper import *
import random
import json
import string
@provider(slots=[
SparseNonValueSlot(10), DenseSlot(2), SparseValueSlot(10), StringSlot(1),
IndexSlot(3)
])
def processNonSequenceData(obj, filename):
with open(filename, "rb") as f:
for line in f:
slots_str = line.split(';')
index = int(slots_str[0])
non_values = map(int, slots_str[1].split()[1:])
dense = map(float, slots_str[2].split()[1:])
strs = slots_str[4].strip().split(' ', 1)[1]
def __values_mapper__(s):
s = s.split(":")
return int(s[0]), float(s[1])
values = map(__values_mapper__, slots_str[3].split()[1:])
yield [non_values, dense, values, strs, index]
SPARSE_ID_LIMIT = 1000
SPARSE_ID_COUNT = 100
SEQUENCE_LIMIT = 50
STRING_LIMIT = 10
sparse_id_randomer = lambda: random.randrange(0, SPARSE_ID_LIMIT - 1)
sparse_count_randomer = lambda: random.randrange(1, SPARSE_ID_COUNT)
val_randomer = lambda: random.uniform(-1.0, 1.0)
seq_count_randomer = lambda: random.randrange(1, SEQUENCE_LIMIT)
str_count_randomer = lambda: random.randrange(1, STRING_LIMIT)
class IDRandomer(): # A random generator, return unique id
def __init__(self):
self.id_set = set()
def __call__(self):
idx = sparse_id_randomer()
if idx not in self.id_set:
self.id_set.add(idx)
return idx
else:
return self.__call__()
# SparseValueSlot
def sparse_value_creator(_):
rand = IDRandomer()
return [(rand(), val_randomer()) for _ in xrange(sparse_count_randomer())]
sparse_value = map(sparse_value_creator, range(seq_count_randomer()))
# DenseSlot
def dense_creator(_):
return [val_randomer() for _ in xrange(SPARSE_ID_LIMIT)]
dense = map(dense_creator, range(seq_count_randomer()))
# SparseNonValueSlot
def sparse_creator(_):
rand = IDRandomer()
return [rand() for _ in xrange(sparse_count_randomer())]
sparse_nonvalue = map(sparse_creator, range(seq_count_randomer()))
# IndexSlot
ids = [sparse_id_randomer() for _ in range(seq_count_randomer())]
# StringSlot
def random_str(size=8, chars=string.ascii_letters + string.digits):
return ''.join(random.choice(chars) for _ in range(size))
strs = [random_str(str_count_randomer()) for _ in range(seq_count_randomer())]
def processSeqAndGenerateDataInit(obj, *args, **kwargs):
obj.json_filename = kwargs.get("load_data_args", "test_data.json")
@provider(
slots=[
SparseValueSlot(SPARSE_ID_LIMIT), DenseSlot(SPARSE_ID_LIMIT),
SparseNonValueSlot(SPARSE_ID_LIMIT), IndexSlot(SPARSE_ID_LIMIT),
StringSlot(SPARSE_ID_LIMIT)
],
use_seq=True,
init_hook=processSeqAndGenerateDataInit)
def processSeqAndGenerateData(obj, name):
retv = [sparse_value, dense, sparse_nonvalue, ids, strs]
# Write to protoseq.
with open(obj.json_filename, "w") as f:
json.dump(retv, f)
yield retv
def processSubSeqAndGenerateDataInit(obj, *args, **kwargs):
obj.json_filename = kwargs.get("load_data_args", "test_data.json")
@provider(
slots=[
SparseValueSlot(SPARSE_ID_LIMIT), DenseSlot(SPARSE_ID_LIMIT),
SparseNonValueSlot(SPARSE_ID_LIMIT), IndexSlot(SPARSE_ID_LIMIT),
StringSlot(SPARSE_ID_LIMIT)
],
use_seq=True,
init_hook=processSubSeqAndGenerateDataInit)
def processSubSeqAndGenerateData(obj, name):
retv_json = [sparse_value, dense, sparse_nonvalue, ids, strs]
retv_wrapper = [[sparse_value], [dense], [sparse_nonvalue], [ids], [strs]]
# Write to protoseq.
with open(obj.json_filename, "w") as f:
json.dump(retv_json, f)
yield retv_wrapper
if __name__ == "__main__":
pvd = processNonSequenceData("test.txt")
print pvd.getNextBatch(100)
pvd = processSeqAndGenerateData("_")
print pvd.getNextBatch(100)
pvd = processSubSeqAndGenerateData("_")
print pvd.getNextBatch(1)