You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/math/blas_impl.h

371 lines
11 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <limits>
#include <vector>
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
namespace math {
template <typename T>
struct CBlas;
#ifdef PADDLE_WITH_MKLML
template <>
struct CBlas<float> {
template <typename... ARGS>
static void GEMM(ARGS... args) {
platform::dynload::cblas_sgemm(args...);
}
#ifdef PADDLE_WITH_LIBXSMM
template <typename... ARGS>
static void SMM_GEMM(ARGS... args) {
libxsmm_sgemm(args...);
}
#endif
template <typename... ARGS>
static void AXPY(ARGS... args) {
platform::dynload::cblas_saxpy(args...);
}
template <typename... ARGS>
static void VCOPY(ARGS... args) {
platform::dynload::cblas_scopy(args...);
}
template <typename... ARGS>
static void GEMV(ARGS... args) {
platform::dynload::cblas_sgemv(args...);
}
template <typename... ARGS>
static void GEMM_BATCH(ARGS... args) {
platform::dynload::cblas_sgemm_batch(args...);
}
template <typename... ARGS>
static void VADD(ARGS... args) {
platform::dynload::vsAdd(args...);
}
};
template <>
struct CBlas<double> {
template <typename... ARGS>
static void GEMM(ARGS... args) {
platform::dynload::cblas_dgemm(args...);
}
#ifdef PADDLE_WITH_LIBXSMM
template <typename... ARGS>
static void SMM_GEMM(ARGS... args) {
libxsmm_dgemm(args...);
}
#endif
template <typename... ARGS>
static void AXPY(ARGS... args) {
platform::dynload::cblas_daxpy(args...);
}
template <typename... ARGS>
static void VCOPY(ARGS... args) {
platform::dynload::cblas_dcopy(args...);
}
template <typename... ARGS>
static void GEMV(ARGS... args) {
platform::dynload::cblas_dgemv(args...);
}
template <typename... ARGS>
static void GEMM_BATCH(ARGS... args) {
platform::dynload::cblas_dgemm_batch(args...);
}
template <typename... ARGS>
static void VADD(ARGS... args) {
platform::dynload::vdAdd(args...);
}
};
#else
template <>
struct CBlas<float> {
template <typename... ARGS>
static void GEMM(ARGS... args) {
cblas_sgemm(args...);
}
template <typename... ARGS>
static void AXPY(ARGS... args) {
cblas_saxpy(args...);
}
template <typename... ARGS>
static void VCOPY(ARGS... args) {
cblas_scopy(args...);
}
template <typename... ARGS>
static void GEMV(ARGS... args) {
cblas_sgemv(args...);
}
};
template <>
struct CBlas<double> {
template <typename... ARGS>
static void GEMM(ARGS... args) {
cblas_dgemm(args...);
}
template <typename... ARGS>
static void AXPY(ARGS... args) {
cblas_daxpy(args...);
}
template <typename... ARGS>
static void VCOPY(ARGS... args) {
cblas_dcopy(args...);
}
template <typename... ARGS>
static void GEMV(ARGS... args) {
cblas_dgemv(args...);
}
};
#endif
template <>
struct CBlas<platform::float16> {
static void GEMM(...) { PADDLE_THROW("float16 GEMM not supported on CPU"); }
static void SMM_GEMM(...) {
PADDLE_THROW("float16 SMM_GEMM not supported on CPU");
}
#ifdef PADDLE_WITH_MKLML
static void GEMM_BATCH(...) {
PADDLE_THROW("float16 GEMM_BATCH not supported on CPU");
}
#endif
};
template <typename T>
inline bool UseXSMM(const int &m, const int &n, const int &k, bool transa,
bool transb, const T &alpha, const T &beta) {
#ifdef PADDLE_WITH_LIBXSMM
// Refer to https://github.com/hfp/libxsmm/blob/master/README.md
// But the threshold is custom
constexpr int LIBXSMM_THRESHOLD = 20 * 20 * 20;
if (m * n * k > LIBXSMM_THRESHOLD || transa || transb ||
std::abs<T>(alpha - static_cast<T>(1) >
std::numeric_limits<T>::epsilon()) ||
std::abs<T>(beta) > std::numeric_limits<T>::epsilon()) {
return false;
} else {
return true;
}
#endif
return false;
}
template <>
inline bool UseXSMM<platform::float16>(const int &m, const int &n, const int &k,
bool transa, bool transb,
const platform::float16 &alpha,
const platform::float16 &beta) {
return false;
}
template <typename T>
inline void GEMM_WARP(CBLAS_ORDER order, CBLAS_TRANSPOSE transA,
CBLAS_TRANSPOSE transB, int M, int N, int K, T alpha,
const T *A, int lda, const T *B, int ldb, T beta, T *C,
int ldc) {
#ifdef PADDLE_WITH_LIBXSMM
if (UseXSMM<T>(M, N, K, transA != CblasNoTrans, transB != CblasNoTrans, alpha,
beta)) {
// Note: SMM use ColMajor
const char transa = 'N';
const char transb = 'N';
CBlas<T>::SMM_GEMM(&transa, &transb, &N, &M, &K, &alpha, B, &ldb, A, &lda,
&beta, C, &ldc);
return;
}
#endif
#ifdef PADDLE_MKL_SPLIT_GEMM
constexpr int bs = 2;
if (M % bs == 0 && transA == CblasNoTrans && transB == CblasNoTrans) {
for (int off = 0; off < M; off += bs) {
CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans, CblasNoTrans, bs, N, K, alpha,
A + off * lda, lda, B, ldb, beta, C + off * ldb, ldc);
}
return;
}
#endif
CBlas<T>::GEMM(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
beta, C, ldc);
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
CBLAS_TRANSPOSE transB, int M,
int N, int K, T alpha, const T *A,
const T *B, T beta, T *C) const {
int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K;
int ldc = N;
GEMM_WARP<T>(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
beta, C, ldc);
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMM(bool transA, bool transB, int M,
int N, int K, T alpha, const T *A,
int lda, const T *B, int ldb,
T beta, T *C, int ldc) const {
GEMM_WARP<T>(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans,
transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A,
lda, B, ldb, beta, C, ldc);
}
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a, bool trans_a,
const framework::Tensor &mat_b, bool trans_b,
T alpha, framework::Tensor *mat_out,
T beta) const {
auto dim_a = mat_a.dims();
auto dim_b = mat_b.dims();
auto dim_out = mat_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(
mat_a.place() == mat_b.place() && mat_a.place() == mat_out->place(),
"The places of matrices must be same");
int M = dim_out[0];
int N = dim_out[1];
int K = !trans_a ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = !trans_b ? CblasNoTrans : CblasTrans;
this->GEMM(transA, transB, M, N, K, alpha, mat_a.data<T>(), mat_b.data<T>(),
beta, mat_out->data<T>());
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::AXPY(int n, T alpha, const T *x,
T *y) const {
CBlas<T>::AXPY(n, alpha, x, 1, y, 1);
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VCOPY(int n, const T *x, T *y) const {
CBlas<T>::VCOPY(n, x, 1, y, 1);
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::VADD(int n, const T *x, const T *y,
T *z) const {
#ifdef PADDLE_WITH_MKLML
CBlas<T>::VADD(n, x, y, z);
#else
this->template VCOPY<T>(n, y, z);
this->template AXPY<T>(n, 1., x, z);
#endif
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::GEMV(bool trans_a, int M, int N, T alpha,
const T *A, const T *B, T beta,
T *C) const {
CBLAS_TRANSPOSE transA = !trans_a ? CblasNoTrans : CblasTrans;
CBlas<T>::GEMV(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}
template <>
template <typename T>
void Blas<platform::CPUDeviceContext>::BatchedGEMM(
CBLAS_TRANSPOSE transA, CBLAS_TRANSPOSE transB, int M, int N, int K,
T alpha, const T *A, const T *B, T beta, T *C, int batchCount,
int64_t strideA, int64_t strideB) const {
#ifdef PADDLE_WITH_MKLML
int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K;
int ldc = N;
auto a_array = std::vector<const T *>(batchCount);
auto b_array = std::vector<const T *>(batchCount);
auto c_array = std::vector<T *>(batchCount);
for (int k = 0; k < batchCount; ++k) {
a_array[k] = &A[k * strideA];
b_array[k] = &B[k * strideB];
c_array[k] = &C[k * M * N];
}
CBlas<T>::GEMM_BATCH(CblasRowMajor, &transA, &transB, &M, &N, &K, &alpha,
a_array.data(), &lda, b_array.data(), &ldb, &beta,
c_array.data(), &ldc, 1 /* group_count */, &batchCount);
#else
for (int k = 0; k < batchCount; ++k) {
auto *Ak = &A[k * strideA];
auto *Bk = &B[k * strideB];
auto *Ck = &C[k * M * N];
this->template GEMM<T>(transA, transB, M, N, K, alpha, Ak, Bk, beta, Ck);
}
#endif
}
template <typename DeviceContext>
template <typename T>
void Blas<DeviceContext>::MatMul(const framework::Tensor &mat_a,
const MatDescriptor &dim_a,
const framework::Tensor &mat_b,
const MatDescriptor &dim_b, T alpha,
framework::Tensor *mat_out, T beta) const {
PADDLE_ENFORCE_EQ(dim_a.width_, dim_b.height_);
CBLAS_TRANSPOSE transA = !dim_a.trans_ ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = !dim_b.trans_ ? CblasNoTrans : CblasTrans;
if (dim_a.batch_size_ == 0 && dim_b.batch_size_ == 0) {
this->template GEMM<T>(transA, transB, dim_a.height_, dim_b.width_,
dim_a.width_, alpha, mat_a.data<T>(),
mat_b.data<T>(), beta, mat_out->data<T>());
} else {
PADDLE_ENFORCE(dim_a.batch_size_ == dim_b.batch_size_ ||
dim_a.batch_size_ == 0 || dim_b.batch_size_ == 0);
this->template BatchedGEMM<T>(
transA, transB, dim_a.height_, dim_b.width_, dim_a.width_, alpha,
mat_a.data<T>(), mat_b.data<T>(), beta, mat_out->data<T>(),
dim_a.batch_size_ == 0 ? dim_b.batch_size_ : dim_a.batch_size_,
dim_a.stride_, dim_b.stride_);
}
}
} // namespace math
} // namespace operators
} // namespace paddle