You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
300 lines
11 KiB
300 lines
11 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
template <typename T>
|
|
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::SelectedRows& input1,
|
|
const framework::SelectedRows& input2,
|
|
framework::SelectedRows* output) {
|
|
auto in1_height = input1.height();
|
|
PADDLE_ENFORCE_EQ(in1_height, input2.height());
|
|
output->set_height(in1_height);
|
|
|
|
auto& in1_rows = input1.rows();
|
|
auto& in2_rows = input2.rows();
|
|
std::vector<int64_t> out_rows;
|
|
out_rows.reserve(in1_rows.size() + in2_rows.size());
|
|
|
|
// concat rows
|
|
out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
|
|
out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
|
|
output->set_rows(out_rows);
|
|
|
|
auto* out_value = output->mutable_value();
|
|
auto& in1_value = input1.value();
|
|
auto& in2_value = input2.value();
|
|
|
|
auto in1_row_numel = in1_value.numel() / in1_rows.size();
|
|
PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
|
|
PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());
|
|
|
|
auto in1_place = input1.place();
|
|
PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
|
|
auto in2_place = input2.place();
|
|
PADDLE_ENFORCE(platform::is_cpu_place(in2_place));
|
|
auto out_place = context.GetPlace();
|
|
PADDLE_ENFORCE(platform::is_cpu_place(out_place));
|
|
|
|
auto* out_data = out_value->data<T>();
|
|
auto* in1_data = in1_value.data<T>();
|
|
memory::Copy(boost::get<platform::CPUPlace>(out_place), out_data,
|
|
boost::get<platform::CPUPlace>(in1_place), in1_data,
|
|
in1_value.numel() * sizeof(T));
|
|
|
|
auto* in2_data = in2_value.data<T>();
|
|
memory::Copy(boost::get<platform::CPUPlace>(out_place),
|
|
out_data + in1_value.numel(),
|
|
boost::get<platform::CPUPlace>(in2_place), in2_data,
|
|
in2_value.numel() * sizeof(T));
|
|
}
|
|
};
|
|
|
|
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
|
|
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
|
|
|
|
template <typename T>
|
|
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::SelectedRows& input1,
|
|
const framework::Tensor& input2, framework::Tensor* output) {
|
|
auto in1_height = input1.height();
|
|
auto in2_dims = input2.dims();
|
|
auto out_dims = output->dims();
|
|
PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
|
|
PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);
|
|
|
|
auto& in1_value = input1.value();
|
|
auto& in1_rows = input1.rows();
|
|
|
|
int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
|
|
PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
|
|
PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);
|
|
|
|
SetConstant<platform::CPUDeviceContext, T> functor;
|
|
functor(context, output, 0.0);
|
|
|
|
auto* in1_data = in1_value.data<T>();
|
|
auto* out_data = output->data<T>();
|
|
|
|
for (size_t i = 0; i < in1_rows.size(); i++) {
|
|
for (int64_t j = 0; j < in1_row_numel; j++) {
|
|
out_data[in1_rows[i] * in1_row_numel + j] +=
|
|
in1_data[i * in1_row_numel + j];
|
|
}
|
|
}
|
|
|
|
auto out_eigen = framework::EigenVector<T>::Flatten(*output);
|
|
auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
|
|
out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
|
|
}
|
|
};
|
|
|
|
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
|
|
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
|
|
|
|
template <typename T>
|
|
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::SelectedRows& input1,
|
|
const int64_t input2_offset,
|
|
framework::SelectedRows* input2) {
|
|
auto in1_height = input1.height();
|
|
PADDLE_ENFORCE_EQ(in1_height, input2->height());
|
|
|
|
auto& in1_rows = input1.rows();
|
|
auto& in2_rows = *(input2->mutable_rows());
|
|
|
|
auto& in1_value = input1.value();
|
|
auto* in2_value = input2->mutable_value();
|
|
|
|
// concat rows
|
|
in2_rows.Extend(in1_rows.begin(), in1_rows.end());
|
|
|
|
auto in1_place = input1.place();
|
|
PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
|
|
auto in2_place = input2->place();
|
|
PADDLE_ENFORCE(platform::is_cpu_place(in2_place));
|
|
|
|
auto* in1_data = in1_value.data<T>();
|
|
auto* in2_data = in2_value->data<T>();
|
|
memory::Copy(boost::get<platform::CPUPlace>(in2_place),
|
|
in2_data + input2_offset,
|
|
boost::get<platform::CPUPlace>(in1_place), in1_data,
|
|
in1_value.numel() * sizeof(T));
|
|
}
|
|
};
|
|
|
|
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
|
|
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
|
|
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
|
|
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
|
|
|
|
template <typename T>
|
|
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const framework::SelectedRows& input1,
|
|
framework::Tensor* input2) {
|
|
auto in1_height = input1.height();
|
|
auto in2_dims = input2->dims();
|
|
PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
|
|
|
|
auto& in1_value = input1.value();
|
|
auto& in1_rows = input1.rows();
|
|
|
|
int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
|
|
PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);
|
|
|
|
auto* in1_data = in1_value.data<T>();
|
|
auto* input2_data = input2->data<T>();
|
|
|
|
for (size_t i = 0; i < in1_rows.size(); i++) {
|
|
for (int64_t j = 0; j < in1_row_numel; j++) {
|
|
input2_data[in1_rows[i] * in1_row_numel + j] +=
|
|
in1_data[i * in1_row_numel + j];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
|
|
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
|
|
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
|
|
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
|
|
|
|
// This is a separated namespace for manipulate SelectedRows typed
|
|
// data. Like merge duplicated rows, adding two SelectedRows etc.
|
|
//
|
|
// Another group of functors is called "scatter updates", which means
|
|
// use SelectedRows to update a dense tensor with different Ops, like
|
|
// add or mul.
|
|
namespace scatter {
|
|
|
|
size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
|
|
return std::find(rows.begin(), rows.end(), value) - rows.begin();
|
|
}
|
|
|
|
template <typename T>
|
|
struct MergeAdd<platform::CPUDeviceContext, T> {
|
|
framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
|
|
const framework::SelectedRows& input) {
|
|
framework::SelectedRows out;
|
|
auto input_rows = input.rows();
|
|
std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
|
|
std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
|
|
|
|
auto input_width = input.value().dims()[1];
|
|
out.set_rows(merge_rows);
|
|
out.set_height(input.height());
|
|
out.mutable_value()->mutable_data<T>(
|
|
framework::make_ddim(
|
|
{static_cast<int64_t>(merge_rows.size()), input_width}),
|
|
context.GetPlace());
|
|
|
|
math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
|
|
constant_functor(context, out.mutable_value(), 0.0);
|
|
|
|
auto* out_data = out.mutable_value()->data<T>();
|
|
auto* input_data = input.value().data<T>();
|
|
|
|
for (size_t i = 0; i < input_rows.size(); i++) {
|
|
size_t out_i = FindPos(merge_rows, input_rows[i]);
|
|
for (int64_t j = 0; j < input_width; j++) {
|
|
out_data[out_i * input_width + j] += input_data[i * input_width + j];
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
};
|
|
|
|
template struct MergeAdd<platform::CPUDeviceContext, float>;
|
|
template struct MergeAdd<platform::CPUDeviceContext, double>;
|
|
template struct MergeAdd<platform::CPUDeviceContext, int>;
|
|
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
|
|
|
|
template <typename T>
|
|
struct UpdateToTensor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
const ScatterOps& op, const framework::SelectedRows& input1,
|
|
framework::Tensor* input2) {
|
|
auto in1_height = input1.height();
|
|
auto in2_dims = input2->dims();
|
|
PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
|
|
|
|
auto& in1_value = input1.value();
|
|
auto& in1_rows = input1.rows();
|
|
|
|
int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
|
|
PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);
|
|
|
|
auto* in1_data = in1_value.data<T>();
|
|
auto* input2_data = input2->data<T>();
|
|
|
|
// FIXME(typhoonzero): use macro fix the below messy code.
|
|
switch (op) {
|
|
case ScatterOps::ASSIGN:
|
|
INLINE_FOR2(in1_rows.size(), in1_row_numel)
|
|
input2_data[in1_rows[i] * in1_row_numel + j] =
|
|
in1_data[i * in1_row_numel + j];
|
|
break;
|
|
case ScatterOps::ADD:
|
|
INLINE_FOR2(in1_rows.size(), in1_row_numel)
|
|
input2_data[in1_rows[i] * in1_row_numel + j] +=
|
|
in1_data[i * in1_row_numel + j];
|
|
break;
|
|
case ScatterOps::SUB:
|
|
INLINE_FOR2(in1_rows.size(), in1_row_numel)
|
|
input2_data[in1_rows[i] * in1_row_numel + j] -=
|
|
in1_data[i * in1_row_numel + j];
|
|
break;
|
|
case ScatterOps::SUBBY:
|
|
INLINE_FOR2(in1_rows.size(), in1_row_numel)
|
|
input2_data[in1_rows[i] * in1_row_numel + j] =
|
|
in1_data[i * in1_row_numel + j] -
|
|
input2_data[in1_rows[i] * in1_row_numel + j];
|
|
break;
|
|
case ScatterOps::MUL:
|
|
INLINE_FOR2(in1_rows.size(), in1_row_numel)
|
|
input2_data[in1_rows[i] * in1_row_numel + j] *=
|
|
in1_data[i * in1_row_numel + j];
|
|
break;
|
|
case ScatterOps::DIV:
|
|
INLINE_FOR2(in1_rows.size(), in1_row_numel)
|
|
input2_data[in1_rows[i] * in1_row_numel + j] /=
|
|
in1_data[i * in1_row_numel + j];
|
|
break;
|
|
case ScatterOps::DIVBY:
|
|
INLINE_FOR2(in1_rows.size(), in1_row_numel)
|
|
input2_data[in1_rows[i] * in1_row_numel + j] =
|
|
in1_data[i * in1_row_numel + j] /
|
|
input2_data[in1_rows[i] * in1_row_numel + j];
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace scatter
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|