You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
4.5 KiB
155 lines
4.5 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
/*
|
|
* This file contains demo for mobilenet, se-resnext50 and ocr.
|
|
*/
|
|
|
|
#include <gflags/gflags.h>
|
|
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include "paddle/fluid/inference/demo_ci/utils.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
DECLARE_double(fraction_of_gpu_memory_to_use);
|
|
#endif
|
|
DEFINE_string(modeldir, "", "Directory of the inference model.");
|
|
DEFINE_string(refer, "", "path to reference result for comparison.");
|
|
DEFINE_string(
|
|
data, "",
|
|
"path of data; each line is a record, format is "
|
|
"'<space splitted floats as data>\t<space splitted ints as shape'");
|
|
DEFINE_bool(use_gpu, false, "Whether use gpu.");
|
|
|
|
namespace paddle {
|
|
namespace demo {
|
|
|
|
struct Record {
|
|
std::vector<float> data;
|
|
std::vector<int32_t> shape;
|
|
};
|
|
|
|
void split(const std::string& str, char sep, std::vector<std::string>* pieces);
|
|
|
|
Record ProcessALine(const std::string& line) {
|
|
VLOG(3) << "process a line";
|
|
std::vector<std::string> columns;
|
|
split(line, '\t', &columns);
|
|
CHECK_EQ(columns.size(), 2UL)
|
|
<< "data format error, should be <data>\t<shape>";
|
|
|
|
Record record;
|
|
std::vector<std::string> data_strs;
|
|
split(columns[0], ' ', &data_strs);
|
|
for (auto& d : data_strs) {
|
|
record.data.push_back(std::stof(d));
|
|
}
|
|
|
|
std::vector<std::string> shape_strs;
|
|
split(columns[1], ' ', &shape_strs);
|
|
for (auto& s : shape_strs) {
|
|
record.shape.push_back(std::stoi(s));
|
|
}
|
|
VLOG(3) << "data size " << record.data.size();
|
|
VLOG(3) << "data shape size " << record.shape.size();
|
|
return record;
|
|
}
|
|
|
|
void CheckOutput(const std::string& referfile, const PaddleTensor& output) {
|
|
std::string line;
|
|
std::ifstream file(referfile);
|
|
std::getline(file, line);
|
|
auto refer = ProcessALine(line);
|
|
file.close();
|
|
|
|
size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
|
|
VLOG(3) << "predictor output numel " << numel;
|
|
VLOG(3) << "reference output numel " << refer.data.size();
|
|
PADDLE_ENFORCE_EQ(numel, refer.data.size());
|
|
switch (output.dtype) {
|
|
case PaddleDType::INT64: {
|
|
for (size_t i = 0; i < numel; ++i) {
|
|
PADDLE_ENFORCE_EQ(static_cast<int64_t*>(output.data.data())[i],
|
|
refer.data[i]);
|
|
}
|
|
break;
|
|
}
|
|
case PaddleDType::FLOAT32:
|
|
for (size_t i = 0; i < numel; ++i) {
|
|
PADDLE_ENFORCE_LT(
|
|
fabs(static_cast<float*>(output.data.data())[i] - refer.data[i]),
|
|
1e-5);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use the native fluid engine to inference the demo.
|
|
*/
|
|
void Main(bool use_gpu) {
|
|
NativeConfig config;
|
|
config.param_file = FLAGS_modeldir + "/__params__";
|
|
config.prog_file = FLAGS_modeldir + "/__model__";
|
|
config.use_gpu = use_gpu;
|
|
config.device = 0;
|
|
if (FLAGS_use_gpu) {
|
|
config.fraction_of_gpu_memory = 0.1; // set by yourself
|
|
}
|
|
|
|
VLOG(3) << "init predictor";
|
|
auto predictor =
|
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
|
|
|
VLOG(3) << "begin to process data";
|
|
// Just a single batch of data.
|
|
std::string line;
|
|
std::ifstream file(FLAGS_data);
|
|
std::getline(file, line);
|
|
auto record = ProcessALine(line);
|
|
file.close();
|
|
|
|
// Inference.
|
|
PaddleTensor input;
|
|
input.shape = record.shape;
|
|
input.data =
|
|
PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
|
|
input.dtype = PaddleDType::FLOAT32;
|
|
|
|
VLOG(3) << "run executor";
|
|
std::vector<PaddleTensor> output;
|
|
predictor->Run({input}, &output);
|
|
|
|
VLOG(3) << "output.size " << output.size();
|
|
auto& tensor = output.front();
|
|
VLOG(3) << "output: " << SummaryTensor(tensor);
|
|
|
|
// compare with reference result
|
|
CheckOutput(FLAGS_refer, tensor);
|
|
}
|
|
|
|
} // namespace demo
|
|
} // namespace paddle
|
|
|
|
int main(int argc, char** argv) {
|
|
google::ParseCommandLineFlags(&argc, &argv, true);
|
|
paddle::demo::Main(false /* use_gpu*/);
|
|
if (FLAGS_use_gpu) {
|
|
paddle::demo::Main(true /*use_gpu*/);
|
|
}
|
|
return 0;
|
|
}
|