You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
4.9 KiB
139 lines
4.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/operators/elementwise_op_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
struct MulFunctor {
|
|
inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseMulKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* z = ctx.Output<Tensor>("Out");
|
|
z->mutable_data<T>(ctx.GetPlace());
|
|
int axis = ctx.Attr<int>("axis");
|
|
ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
|
|
MulFunctor<T>(), z);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct ElementwiseMulGradFunctor {
|
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
|
typename dY, typename dZ>
|
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
|
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
|
|
|
if (dx) {
|
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
|
dx_e.device(d) = dz_e * y_e;
|
|
}
|
|
|
|
if (dy) {
|
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
|
dy_e.device(d) = x_e * dz_e;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct ElementwiseMulBroadCastGradFunctor {
|
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
|
typename dY, typename dZ, typename Pre, typename N>
|
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
|
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
|
|
|
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
|
|
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
|
|
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
|
|
|
if (dx) {
|
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
|
dx_e.device(d) = dz_e * y_e_bcast;
|
|
}
|
|
|
|
if (dy) {
|
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
|
dy_e.device(d) = (x_e * dz_e)
|
|
.reshape(Eigen::DSizes<int, 2>(pre, n))
|
|
.sum(Eigen::array<int, 1>{{0}});
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct ElementwiseMulBroadCast2GradFunctor {
|
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
|
typename dY, typename dZ, typename Pre, typename N, typename Post>
|
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
|
|
Post post) {
|
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
|
|
|
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
|
|
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
|
|
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
|
if (dx) {
|
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
|
dx_e.device(d) = dz_e * y_e_bcast;
|
|
}
|
|
|
|
if (dy) {
|
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
|
dy_e.device(d) = (x_e * dz_e)
|
|
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
|
|
.sum(Eigen::array<int, 2>{{0, 2}});
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseMulGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* out = ctx.Input<Tensor>("Out");
|
|
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
|
int axis = ctx.Attr<int>("axis");
|
|
ElementwiseGradCompute<DeviceContext, T, ElementwiseMulGradFunctor<T>,
|
|
ElementwiseMulBroadCastGradFunctor<T>,
|
|
ElementwiseMulBroadCast2GradFunctor<T>>(
|
|
ctx, x, y, out, dout, axis, dx, dy);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|