You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/tests/test_prepare_op.cc

242 lines
8.8 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Created by Jiabin on 2019-08-19.
//
#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/imperative/type_defs.h"
namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;
namespace paddle {
namespace imperative {
static framework::RuntimeContext PrepareRuntimeContext(
const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
framework::VariableValueMap inputs, outputs;
for (auto& in_pair : ins) {
auto& in_ctx = inputs[in_pair.first];
in_ctx.reserve(in_pair.second.size());
for (auto& in_var : in_pair.second) {
in_ctx.emplace_back(in_var->MutableVar());
}
}
for (auto& out_pair : outs) {
auto& out_ctx = outputs[out_pair.first];
out_ctx.reserve(out_pair.second.size());
for (auto& out_var : out_pair.second) {
out_ctx.emplace_back(out_var->MutableVar());
}
}
return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}
static framework::VariableNameMap CreateVarNameMap(
const framework::OpInfo& op_info, const std::string& op_type,
const NameVarBaseMap& varbase_map, bool is_input) {
if (op_info.proto_ == nullptr) {
return {};
}
framework::VariableNameMap result;
for (auto& var :
is_input ? op_info.Proto().inputs() : op_info.Proto().outputs()) {
auto it = varbase_map.find(var.name());
if (it == varbase_map.end()) {
PADDLE_ENFORCE_EQ(
var.dispensable(), true,
platform::errors::NotFound("Variable %s is not dispensable and "
"there are no such var in inputs",
var.name()));
result[var.name()] = {};
} else {
auto& var_vector = it->second;
std::vector<std::string> args;
args.reserve(var_vector.size());
for (auto& var_base : var_vector) {
args.emplace_back(var_base->Name());
}
result[var.name()] = std::move(args);
}
}
return result;
}
using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;
using var_pair = std::pair<std::string, vb_vector>;
TEST(test_prepare_op, test_prepare_op) {
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
std::shared_ptr<imperative::VarBase> vout(
new imperative::VarBase(false, "vout"));
framework::OpDesc desc;
platform::CPUPlace place;
vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
place);
var_pair x_pair = var_pair("X", vb_vector(1, vin));
var_pair out_pair = var_pair("Out", vb_vector(1, vout));
imperative::NameVarBaseMap ins = {x_pair};
imperative::NameVarBaseMap outs = {out_pair};
framework::AttributeMap split_attr_map;
const auto& info = framework::OpInfoMap::Instance().Get("split");
if (info.Checker()) info.Checker()->Check(&split_attr_map);
framework::VariableNameMap var_in_map =
CreateVarNameMap(info, "split", ins, true);
framework::VariableNameMap var_out_map =
CreateVarNameMap(info, "split", outs, false);
auto op = framework::OpRegistry::CreateOp("split", var_in_map, var_out_map,
split_attr_map);
framework::RuntimeContext ctx = PrepareRuntimeContext(ins, outs);
ASSERT_NO_FATAL_FAILURE(PreparedOp preparedOp = PreparedOp::Prepare(
ins, outs,
dynamic_cast<framework::OperatorWithKernel&>(*op),
place, split_attr_map));
}
const framework::Tensor* GetTensorFromVar(const framework::Variable& var);
TEST(test_prepare_op, test_get_tensor_from_var) {
std::shared_ptr<imperative::VarBase> vout_error(
new imperative::VarBase(false, "vout_error"));
vout_error->MutableVar()->GetMutable<framework::SelectedRows>();
auto* ts = GetTensorFromVar(*vout_error->MutableVar());
ASSERT_TRUE(ts != nullptr);
}
#if defined(PADDLE_WITH_CUDA)
TEST(test_prepare_op, test_prepare_data) {
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
std::shared_ptr<imperative::VarBase> vout(
new imperative::VarBase(false, "vout"));
framework::OpDesc desc;
platform::CPUPlace cpu_place;
platform::CUDAPlace gpu_place(0);
std::vector<float> src_data(10, 2.0);
std::vector<int64_t> dims = {2, 5};
// prepare an cpu only input
auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
vin_tensor->Resize(framework::make_ddim(dims));
auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
src_data.data(), sizeof(float) * src_data.size());
var_pair x_pair = var_pair("X", vb_vector(1, vin));
var_pair out_pair = var_pair("Out", vb_vector(1, vout));
imperative::NameVarBaseMap ins = {x_pair};
imperative::NameVarBaseMap outs = {out_pair};
const std::string op_type = "relu";
framework::AttributeMap attr_map;
const auto& info = framework::OpInfoMap::Instance().Get(op_type);
if (info.Checker()) info.Checker()->Check(&attr_map);
framework::VariableNameMap var_in_map =
CreateVarNameMap(info, op_type, ins, true);
framework::VariableNameMap var_out_map =
CreateVarNameMap(info, op_type, outs, false);
auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
attr_map);
framework::RuntimeContext ctx = PrepareRuntimeContext(ins, outs);
// test if it can be transformed to GPU place
PreparedOp prepared_op = PreparedOp::Prepare(
ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), gpu_place,
attr_map);
for (const auto& name_pair : ins) {
for (const auto& vb : name_pair.second) {
ASSERT_TRUE(platform::is_same_place(
vb->Var().Get<framework::LoDTensor>().place(), gpu_place));
}
}
}
#endif
void TestPrepareDataSamePlace(framework::AttributeMap attr_map) {
std::shared_ptr<imperative::VarBase> vin(
new imperative::VarBase(false, "vin"));
std::shared_ptr<imperative::VarBase> vout(
new imperative::VarBase(false, "vout"));
framework::OpDesc desc;
platform::CPUPlace cpu_place;
std::vector<float> src_data(10, 2.0);
std::vector<int64_t> dims = {2, 5};
// prepare an cpu only input
auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
vin_tensor->Resize(framework::make_ddim(dims));
auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
src_data.data(), sizeof(float) * src_data.size());
var_pair x_pair = var_pair("X", vb_vector(1, vin));
var_pair out_pair = var_pair("Out", vb_vector(1, vout));
imperative::NameVarBaseMap ins = {x_pair};
imperative::NameVarBaseMap outs = {out_pair};
const std::string op_type = "relu";
const auto& info = framework::OpInfoMap::Instance().Get(op_type);
if (info.Checker()) info.Checker()->Check(&attr_map);
framework::VariableNameMap var_in_map =
CreateVarNameMap(info, op_type, ins, true);
framework::VariableNameMap var_out_map =
CreateVarNameMap(info, op_type, outs, false);
auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
attr_map);
framework::RuntimeContext ctx = PrepareRuntimeContext(ins, outs);
// test if it never transferred on GPU place
PreparedOp prepared_op = PreparedOp::Prepare(
ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), cpu_place,
attr_map);
for (const auto& name_pair : ins) {
for (const auto& vb : name_pair.second) {
ASSERT_TRUE(platform::is_same_place(
vb->Var().Get<framework::LoDTensor>().place(), cpu_place));
}
}
}
TEST(test_prepare_op, test_prepare_data_same_place) {
TestPrepareDataSamePlace({});
}
#ifdef PADDLE_WITH_MKLDNN
TEST(test_prepare_op, test_prepare_data_cpu_mkldnn) {
TestPrepareDataSamePlace({{"use_mkldnn", true}});
}
#endif
} // namespace imperative
} // namespace paddle
USE_OP(split);
USE_OP(relu);
#ifdef PADDLE_WITH_MKLDNN
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
#endif