You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/math/tests/test_TrainingAlgorithm.cpp

462 lines
18 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "OriginalOptimizerApi.h"
#include "PerfUtils.h"
#include "TensorCheck.h"
#include "paddle/math/TrainingAlgorithmOp.h"
#include "paddle/utils/Util.h"
using namespace paddle; // NOLINT
#ifndef PADDLE_TYPE_DOUBLE
DEFINE_double(max_diff, 1e-5, "max diff allowed");
#else
DEFINE_double(max_diff, 1e-13, "max diff allowed");
#endif
class SetMaxDiff {
public:
explicit SetMaxDiff(double max_diff) {
max_diff_ = FLAGS_max_diff;
FLAGS_max_diff = max_diff;
}
~SetMaxDiff() { FLAGS_max_diff = max_diff_; }
private:
double max_diff_;
};
#define COPY_VECTOR_TO_CPU(cpuVec, vector) \
do { \
if (vector->useGpu()) { \
cpuVec = Vector::create(vector->getSize(), false); \
cpuVec->copyFrom(*vector); \
} else { \
cpuVec = vector; \
} \
} while (0)
int VectorCheckErr(const Vector& vector1, const Vector& vector2) {
CHECK(vector1.getSize() == vector2.getSize());
const real* data1 = vector1.getData();
const real* data2 = vector2.getData();
size_t size = vector1.getSize();
int count = 0;
for (size_t i = 0; i < size; i++) {
real a = data1[i];
real b = data2[i];
if (fabs(a - b) > FLAGS_max_diff) {
if ((fabsf(a - b) / fabsf(a)) > (FLAGS_max_diff / 10.0f)) {
count++;
}
}
}
return count;
}
int VectorCheckErr(const VectorPtr& vector1, const VectorPtr& vector2) {
VectorPtr tmp1;
VectorPtr tmp2;
COPY_VECTOR_TO_CPU(tmp1, vector1);
COPY_VECTOR_TO_CPU(tmp2, vector2);
return VectorCheckErr(*tmp1, *tmp2);
}
#ifdef PADDLE_DISABLE_TIMER
#define CHECK_VECTORPTR(vector1, vector2) \
EXPECT_EQ(VectorCheckErr(vector1, vector2), 0)
#else
#define CHECK_VECTORPTR(vector1, vector2)
#endif
typedef std::function<void(size_t size, bool useGpu)> testMatrixFunc;
void testCase(testMatrixFunc matrixFunc) {
#ifndef PADDLE_ONLY_CPU
for (auto useGpu : {false, true}) {
#else
for (auto useGpu : {false}) {
#endif
for (auto size : {1,
32,
64,
128,
512,
1024,
4096,
32768,
65536,
131072,
262144,
524288,
1048576,
2097152}) {
LOG(INFO) << " size=" << size << " useGpu=" << useGpu;
matrixFunc(size, useGpu);
}
}
}
#define INIT_VECTOR(vec1, vec2, type, size, useGpu) \
vec1[type] = Vector::create(size, useGpu); \
vec2[type] = Vector::create(size, useGpu); \
vec1[type]->rand(); \
vec2[type]->copyFrom(*vec1[type]);
void testAdagrad(size_t size, bool useGpu) {
VectorPtr bufs1[NUM_PARAMETER_TYPES];
VectorPtr bufs2[NUM_PARAMETER_TYPES];
INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);
real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT
real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT
real momentum = (real)rand() / (real)RAND_MAX; // NOLINT
real decayRate = (real)rand() / (real)RAND_MAX; // NOLINT
EXPRESSION_PERFORMANCE(AdagradParameterOptimizer(
bufs1, epsilon, learningRate, momentum, decayRate));
BaseMatrix& value = *bufs2[PARAMETER_VALUE];
BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
BaseMatrix& accum_buffer = *bufs2[PARAMETER_GRADIENT_SQURESUM];
BaseMatrix& accum = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];
EXPRESSION_PERFORMANCE(adagradApply(value,
grad,
mom,
accum_buffer,
accum,
lr,
epsilon,
learningRate,
momentum,
decayRate));
CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
bufs2[PARAMETER_GRADIENT_SQURESUM1]);
CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
bufs2[PARAMETER_LEARNING_RATE]);
}
TEST(Training, Adagrad) { testCase(testAdagrad); }
void testAdaDelta(size_t size, bool useGpu) {
VectorPtr bufs1[NUM_PARAMETER_TYPES];
VectorPtr bufs2[NUM_PARAMETER_TYPES];
INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);
real rou = (real)rand() / (real)RAND_MAX; // NOLINT
real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT
real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT
real momentum = (real)rand() / (real)RAND_MAX; // NOLINT
real decayRate = (real)rand() / (real)RAND_MAX; // NOLINT
EXPRESSION_PERFORMANCE(AdaDeltaParameterOptimizer(
bufs1, rou, epsilon, learningRate, momentum, decayRate));
BaseMatrix& value = *bufs2[PARAMETER_VALUE];
BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
BaseMatrix& accum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
BaseMatrix& accum_update = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];
EXPRESSION_PERFORMANCE(adadeltaApply(value,
grad,
mom,
accum,
accum_update,
lr,
rou,
epsilon,
learningRate,
momentum,
decayRate));
CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
bufs2[PARAMETER_GRADIENT_SQURESUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
bufs2[PARAMETER_GRADIENT_SQURESUM1]);
CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
bufs2[PARAMETER_LEARNING_RATE]);
}
TEST(Training, AdaDelta) { testCase(testAdaDelta); }
template <bool isFirstTime>
void testRMSProp(size_t size, bool useGpu) {
VectorPtr bufs1[NUM_PARAMETER_TYPES];
VectorPtr bufs2[NUM_PARAMETER_TYPES];
INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);
/* make sure 'g - f.square()' greater than 0 */
bufs1[PARAMETER_GRADIENT_SQURESUM]->add(1.0);
bufs2[PARAMETER_GRADIENT_SQURESUM]->copyFrom(
*bufs1[PARAMETER_GRADIENT_SQURESUM]);
real rou = (real)rand() / (real)RAND_MAX; // NOLINT
real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT
real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT
real momentum = (real)rand() / (real)RAND_MAX; // NOLINT
real decayRate = (real)rand() / (real)RAND_MAX; // NOLINT
real accumulatedRou = rou;
EXPRESSION_PERFORMANCE(RMSPropParameterOptimizer(bufs1,
accumulatedRou,
rou,
epsilon,
learningRate,
momentum,
decayRate,
isFirstTime));
BaseMatrix& value = *bufs2[PARAMETER_VALUE];
BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
BaseMatrix& sum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
BaseMatrix& sum1 = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];
EXPRESSION_PERFORMANCE(rmspropApply(value,
grad,
mom,
sum,
sum1,
lr,
accumulatedRou,
rou,
epsilon,
learningRate,
momentum,
decayRate,
isFirstTime));
CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
bufs2[PARAMETER_GRADIENT_SQURESUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
bufs2[PARAMETER_GRADIENT_SQURESUM1]);
CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
bufs2[PARAMETER_LEARNING_RATE]);
}
TEST(Training, RMSProp) {
testCase(testRMSProp<true>);
testCase(testRMSProp<false>);
}
template <bool isFirstTime>
void testDecayedAdagrad(size_t size, bool useGpu) {
VectorPtr bufs1[NUM_PARAMETER_TYPES];
VectorPtr bufs2[NUM_PARAMETER_TYPES];
INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);
real rou = (real)rand() / (real)RAND_MAX; // NOLINT
real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT
real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT
real momentum = (real)rand() / (real)RAND_MAX; // NOLINT
real decayRate = (real)rand() / (real)RAND_MAX; // NOLINT
real accumulatedRou = rou;
if (isFirstTime) {
bufs1[PARAMETER_GRADIENT_SQURESUM]->zeroMem();
bufs2[PARAMETER_GRADIENT_SQURESUM]->zeroMem();
}
EXPRESSION_PERFORMANCE(DecayedAdagradParameterOptimizer(bufs1,
accumulatedRou,
rou,
epsilon,
learningRate,
momentum,
decayRate,
isFirstTime));
BaseMatrix& value = *bufs2[PARAMETER_VALUE];
BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
BaseMatrix& sum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];
EXPRESSION_PERFORMANCE(decayedAdagradApply(value,
grad,
mom,
sum,
lr,
accumulatedRou,
rou,
epsilon,
learningRate,
momentum,
decayRate,
isFirstTime));
CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
bufs2[PARAMETER_GRADIENT_SQURESUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
bufs2[PARAMETER_LEARNING_RATE]);
}
TEST(Training, DecayedAdagrad) {
testCase(testDecayedAdagrad<false>);
testCase(testDecayedAdagrad<true>);
}
void testAdam(size_t size, bool useGpu) {
VectorPtr bufs1[NUM_PARAMETER_TYPES];
VectorPtr bufs2[NUM_PARAMETER_TYPES];
INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_SECOND_MOMENTUM, size, useGpu);
real beta1 = (real)rand() / (real)RAND_MAX; // NOLINT
real beta2 = (real)rand() / (real)RAND_MAX; // NOLINT
real beta1_power = (real)rand() / (real)RAND_MAX; // NOLINT
real beta2_power = (real)rand() / (real)RAND_MAX; // NOLINT
real epsilon = (real)rand() / (real)RAND_MAX; // NOLINT
real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT
EXPRESSION_PERFORMANCE(AdamParameterOptimizer(
bufs1, beta1, beta2, beta1_power, beta2_power, epsilon, learningRate));
BaseMatrix& value = *bufs2[PARAMETER_VALUE];
BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
BaseMatrix& v = *bufs2[PARAMETER_SECOND_MOMENTUM];
EXPRESSION_PERFORMANCE(adamApply(value,
grad,
mom,
v,
beta1,
beta2,
beta1_power,
beta2_power,
epsilon,
learningRate));
CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_SECOND_MOMENTUM],
bufs2[PARAMETER_SECOND_MOMENTUM]);
}
TEST(Training, Adam) { testCase(testAdam); }
void testAdamax(size_t size, bool useGpu) {
VectorPtr bufs1[NUM_PARAMETER_TYPES];
VectorPtr bufs2[NUM_PARAMETER_TYPES];
INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_WEIGHTED_INFINITY_NORM, size, useGpu);
real beta1 = (real)rand() / (real)RAND_MAX; // NOLINT
real beta2 = (real)rand() / (real)RAND_MAX; // NOLINT
real alpha = (real)rand() / (real)RAND_MAX; // NOLINT
int64_t step = 2;
EXPRESSION_PERFORMANCE(
AdamaxParameterOptimizer(bufs1, beta1, beta2, step, alpha));
BaseMatrix& value = *bufs2[PARAMETER_VALUE];
BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
BaseMatrix& u = *bufs2[PARAMETER_WEIGHTED_INFINITY_NORM];
EXPRESSION_PERFORMANCE(
adamaxApply(value, grad, mom, u, beta1, beta2, step, alpha));
CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
CHECK_VECTORPTR(bufs1[PARAMETER_WEIGHTED_INFINITY_NORM],
bufs2[PARAMETER_WEIGHTED_INFINITY_NORM]);
}
TEST(Training, Adamax) {
#ifndef PADDLE_TYPE_DOUBLE
SetMaxDiff diff(1e-4);
#endif
testCase(testAdamax);
}
void testSparseMomentum(size_t size, bool useGpu) {
VectorPtr bufs1[NUM_PARAMETER_TYPES];
VectorPtr bufs2[NUM_PARAMETER_TYPES];
INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM_UT, size, useGpu);
INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM_VT, size, useGpu);
real alpha = (real)rand() / (real)RAND_MAX; // NOLINT
real beta = (real)rand() / (real)RAND_MAX; // NOLINT
real gamma = (real)rand() / (real)RAND_MAX; // NOLINT
real tau = (real)rand() / (real)RAND_MAX; // NOLINT
real learningRate = (real)rand() / (real)RAND_MAX; // NOLINT
EXPRESSION_PERFORMANCE(SparseMomentumParameterOptimizer(
bufs1, alpha, beta, gamma, tau, learningRate));
BaseMatrix& value = *bufs2[PARAMETER_VALUE];
BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
BaseMatrix& momU = *bufs2[PARAMETER_MOMENTUM_UT];
BaseMatrix& momV = *bufs2[PARAMETER_MOMENTUM_VT];
EXPRESSION_PERFORMANCE(sparseMomentumApply(
value, grad, momU, momV, alpha, beta, gamma, tau, learningRate));
CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM_UT], bufs2[PARAMETER_MOMENTUM_UT]);
CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM_VT], bufs2[PARAMETER_MOMENTUM_VT]);
}
TEST(Training, SparseMomentum) { testCase(testSparseMomentum); }