You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
3.6 KiB
116 lines
3.6 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
|
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
|
|
template <int BatchSize, int Axis>
|
|
void TensorRTSplitTest(const std::vector<int> &in_shape,
|
|
const std::vector<int> §ions) {
|
|
std::unordered_set<std::string> parameters({""});
|
|
framework::Scope scope;
|
|
TRTConvertValidation validator(BatchSize + 1, parameters, scope, 10000);
|
|
|
|
auto make_dim = [](const std::vector<int> &shape) {
|
|
nvinfer1::DimsCHW dim;
|
|
dim.c() = shape[0];
|
|
dim.h() = shape[1];
|
|
dim.w() = shape[2];
|
|
return dim;
|
|
};
|
|
validator.DeclInputVar("split_input", make_dim(in_shape));
|
|
std::vector<std::string> output_vars;
|
|
for (size_t i = 0; i < sections.size(); ++i) {
|
|
auto out_shape = in_shape;
|
|
out_shape[Axis - 1] = sections[i];
|
|
std::string output_name = "split_out" + std::to_string(i);
|
|
validator.DeclOutputVar(output_name, make_dim(out_shape));
|
|
output_vars.push_back(output_name);
|
|
}
|
|
|
|
// Prepare Op description
|
|
framework::OpDesc desc;
|
|
desc.SetType("split");
|
|
desc.SetInput("X", {"split_input"});
|
|
desc.SetOutput("Out", output_vars);
|
|
|
|
desc.SetAttr("axis", Axis);
|
|
desc.SetAttr("num", 0);
|
|
desc.SetAttr("sections", sections);
|
|
|
|
validator.SetOp(*desc.Proto());
|
|
|
|
validator.Execute(BatchSize);
|
|
}
|
|
|
|
// batch = 0, axis = 1, same shape
|
|
TEST(split_op, test_same_shape_axis1_batch1) {
|
|
TensorRTSplitTest<1, 1>({4, 2, 2}, {2, 2});
|
|
}
|
|
// batch = 0, axis = 1, different shape
|
|
TEST(split_op, test_different_shape_axis1_batch1) {
|
|
TensorRTSplitTest<1, 1>({3, 2, 2}, {2, 1});
|
|
}
|
|
// batch = 10, axis = 1, same shape
|
|
TEST(split_op, test_same_shape_axis1_batch10) {
|
|
TensorRTSplitTest<10, 1>({4, 2, 2}, {2, 2});
|
|
}
|
|
// batch = 10, axis = 1, different shape
|
|
TEST(split_op, test_different_shape_axis1_batch10) {
|
|
TensorRTSplitTest<10, 1>({3, 2, 2}, {2, 1});
|
|
}
|
|
// batch = 0, axis = 2, same shape
|
|
TEST(split_op, test_same_shape_axis2_batch1) {
|
|
TensorRTSplitTest<1, 2>({3, 4, 2}, {2, 2});
|
|
}
|
|
// batch = 0, axis = 2, different shape
|
|
TEST(split_op, test_different_shape_axis2_batch1) {
|
|
TensorRTSplitTest<1, 2>({3, 3, 2}, {2, 1});
|
|
}
|
|
// batch = 10, axis = 2, same shape
|
|
TEST(split_op, test_same_shape_axis2_batch10) {
|
|
TensorRTSplitTest<10, 2>({3, 4, 2}, {2, 2});
|
|
}
|
|
// batch = 10, axis = 2, different shape
|
|
TEST(split_op, test_different_shape_axis2_batch10) {
|
|
TensorRTSplitTest<10, 2>({3, 3, 2}, {2, 1});
|
|
}
|
|
// batch = 0, axis = 3, same shape
|
|
TEST(split_op, test_same_shape_axis3_batch1) {
|
|
TensorRTSplitTest<1, 3>({3, 2, 4}, {2, 2});
|
|
}
|
|
// batch = 0, axis = 3, different shape
|
|
TEST(split_op, test_different_shape_axis3_batch1) {
|
|
TensorRTSplitTest<1, 3>({3, 2, 3}, {2, 1});
|
|
}
|
|
// batch = 10, axis = 3, same shape
|
|
TEST(split_op, test_same_shape_axis3_batch10) {
|
|
TensorRTSplitTest<10, 3>({3, 2, 4}, {2, 2});
|
|
}
|
|
// batch = 10, axis = 3, different shape
|
|
TEST(split_op, test_different_shape_axis3_batch10) {
|
|
TensorRTSplitTest<10, 3>({3, 2, 3}, {2, 1});
|
|
}
|
|
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
USE_OP(split);
|