You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
346 lines
11 KiB
346 lines
11 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/parallel_executor.h"
|
|
#include "ThreadPool.h"
|
|
#include "lod_tensor.h"
|
|
#include "op_registry.h"
|
|
#include "paddle/fluid/framework/details/fetch_op_handle.h"
|
|
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
|
|
#include "paddle/fluid/framework/details/ssa_graph.h"
|
|
#include "paddle/fluid/platform/nccl_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
using details::DummyVarHandle;
|
|
using details::FetchOpHandle;
|
|
using details::OpHandleBase;
|
|
using details::SSAGraph;
|
|
using details::VarHandleBase;
|
|
|
|
class SSAGraphExecutor {
|
|
DISABLE_COPY_AND_ASSIGN(SSAGraphExecutor);
|
|
|
|
public:
|
|
// Steal graph inside
|
|
explicit SSAGraphExecutor(std::unique_ptr<SSAGraph> &&graph)
|
|
: graph_(std::move(graph)) {}
|
|
|
|
virtual ~SSAGraphExecutor() {}
|
|
|
|
virtual FeedFetchList Run(const std::vector<std::string> &fetch_tensors) = 0;
|
|
|
|
protected:
|
|
std::unique_ptr<SSAGraph> graph_;
|
|
};
|
|
|
|
class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
|
|
public:
|
|
ThreadedSSAGraphExecutor(size_t num_threads, bool use_event,
|
|
const std::vector<Scope *> &local_scopes,
|
|
const std::vector<platform::Place> &places,
|
|
std::unique_ptr<SSAGraph> &&graph)
|
|
: SSAGraphExecutor(std::move(graph)),
|
|
pool_(num_threads >= 2 ? new ::ThreadPool(num_threads) : nullptr),
|
|
local_scopes_(local_scopes),
|
|
places_(places),
|
|
fetch_ctxs_(places),
|
|
use_event_(use_event) {}
|
|
|
|
// Run a SSAGraph by a thread pool
|
|
// Use topological sort algorithm
|
|
FeedFetchList Run(const std::vector<std::string> &fetch_tensors) override {
|
|
std::unordered_map<OpHandleBase *, size_t> pending_ops;
|
|
std::unordered_map<VarHandleBase *, std::atomic<bool>> pending_vars;
|
|
std::unordered_set<OpHandleBase *> ready_ops;
|
|
|
|
auto InsertPendingVar = [&pending_vars](VarHandleBase &var) {
|
|
pending_vars[&var] = var.generated_op_ == nullptr;
|
|
};
|
|
|
|
auto InsertPendingOp = [&pending_ops](OpHandleBase &op_instance) {
|
|
pending_ops.insert({&op_instance, op_instance.inputs_.size()});
|
|
};
|
|
|
|
// Transform SSAGraph to pending_ops & pending_vars
|
|
for (auto &var_map : graph_->vars_) {
|
|
for (auto &name_pair : var_map) {
|
|
for (auto &version_pair : name_pair.second) {
|
|
InsertPendingVar(version_pair.second);
|
|
}
|
|
}
|
|
}
|
|
for (auto &var : graph_->dep_vars_) {
|
|
InsertPendingVar(*var);
|
|
}
|
|
|
|
for (auto &op : graph_->ops_) {
|
|
if (op->inputs_.empty()) { // Special case, Op has no input.
|
|
ready_ops.insert(op.get());
|
|
} else {
|
|
InsertPendingOp(*op);
|
|
}
|
|
}
|
|
|
|
// Step 2. Insert FetchOps
|
|
std::vector<FetchOpHandle> fetch_ops;
|
|
std::vector<DummyVarHandle> dummy_vars;
|
|
FeedFetchList fetch_data(fetch_tensors.size());
|
|
|
|
std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars;
|
|
|
|
for (auto &fetch_var_name : fetch_tensors) {
|
|
for (auto &var_map : graph_->vars_) {
|
|
auto it = var_map.find(fetch_var_name);
|
|
if (it != var_map.end()) {
|
|
fetched_vars[fetch_var_name].push_back(&it->second.rbegin()->second);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < fetch_tensors.size(); ++i) {
|
|
auto &var_name = fetch_tensors[i];
|
|
auto &vars = fetched_vars[var_name];
|
|
fetch_ops.emplace_back(&fetch_data, i, &local_scopes_);
|
|
details::FetchOpHandle *op = &fetch_ops.back();
|
|
|
|
// FIXME: Use new device context
|
|
for (auto &p : places_) {
|
|
op->dev_ctx_[p] = fetch_ctxs_.Get(p);
|
|
}
|
|
|
|
for (auto *var : vars) {
|
|
op->AddInput(var);
|
|
}
|
|
|
|
dummy_vars.emplace_back();
|
|
auto *var = &dummy_vars.back();
|
|
var->generated_op_ = nullptr;
|
|
op->AddOutput(var);
|
|
InsertPendingVar(*var);
|
|
InsertPendingOp(*op);
|
|
}
|
|
|
|
auto run_all_ready_ops = [&] {
|
|
for (auto *op : ready_ops) {
|
|
RunOp(pending_vars, op);
|
|
}
|
|
ready_ops.clear();
|
|
};
|
|
|
|
// Step 3. Execution
|
|
while (!pending_vars.empty()) {
|
|
// 1. Run All Ready ops
|
|
run_all_ready_ops();
|
|
|
|
// 2. Find ready variable
|
|
VarHandleBase *ready_var = nullptr;
|
|
for (auto &pair : pending_vars) {
|
|
if (pair.second.load(std::memory_order_acquire)) {
|
|
ready_var = pair.first;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// if there is no variable ready
|
|
if (ready_var == nullptr) {
|
|
// FIXME use conditional var instead of busy wait.
|
|
// if there is an exception, throw it
|
|
if (exception_) {
|
|
throw * exception_;
|
|
}
|
|
// keep waiting the ready variables
|
|
continue;
|
|
}
|
|
|
|
// 3. Remove the dependency of ready_var.
|
|
// Find the ready_ops after the ready_var.
|
|
pending_vars.erase(ready_var);
|
|
for (auto *op : ready_var->pending_ops_) {
|
|
auto &deps = pending_ops[op];
|
|
--deps;
|
|
if (deps == 0) {
|
|
ready_ops.insert(op);
|
|
}
|
|
}
|
|
// Keep loop until all vars are ready.
|
|
}
|
|
|
|
// Wait FetchOps.
|
|
for (auto &fetch_op : fetch_ops) {
|
|
fetch_op.WaitAndMergeCPUTensors();
|
|
}
|
|
|
|
return fetch_data;
|
|
}
|
|
|
|
~ThreadedSSAGraphExecutor() {}
|
|
|
|
private:
|
|
void RunOp(
|
|
std::unordered_map<VarHandleBase *, std::atomic<bool>> &pending_vars,
|
|
details::OpHandleBase *op) {
|
|
std::vector<std::atomic<bool> *> *ready_buffer =
|
|
new std::vector<std::atomic<bool> *>();
|
|
for (auto *var : op->outputs_) {
|
|
ready_buffer->emplace_back(&pending_vars[var]);
|
|
}
|
|
|
|
auto op_run = [ready_buffer, op, this] {
|
|
try {
|
|
VLOG(10) << op->DebugString();
|
|
op->Run(use_event_);
|
|
for (auto *ready : *ready_buffer) {
|
|
ready->store(true, std::memory_order_release);
|
|
}
|
|
delete ready_buffer;
|
|
} catch (platform::EnforceNotMet ex) {
|
|
exception_.reset(new platform::EnforceNotMet(ex));
|
|
} catch (...) {
|
|
LOG(FATAL) << "Unknown exception catched";
|
|
}
|
|
};
|
|
if (pool_) {
|
|
pool_->enqueue(op_run);
|
|
} else {
|
|
op_run();
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<::ThreadPool> pool_;
|
|
std::vector<Scope *> local_scopes_;
|
|
std::vector<platform::Place> places_;
|
|
platform::DeviceContextPool fetch_ctxs_;
|
|
const bool use_event_;
|
|
std::unique_ptr<platform::EnforceNotMet> exception_;
|
|
};
|
|
|
|
class ParallelExecutorPrivate {
|
|
public:
|
|
explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
|
|
: places_(places), fetch_dev_ctxs_(places) {}
|
|
|
|
std::vector<platform::Place> places_;
|
|
platform::DeviceContextPool fetch_dev_ctxs_;
|
|
std::vector<Scope *> local_scopes_;
|
|
Scope *global_scope_;
|
|
|
|
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
|
|
|
|
std::unique_ptr<SSAGraphExecutor> executor_;
|
|
};
|
|
|
|
ParallelExecutor::ParallelExecutor(
|
|
size_t num_threads, const std::vector<platform::Place> &places,
|
|
const std::unordered_set<std::string> ¶ms,
|
|
const ProgramDesc &startup_program, const ProgramDesc &main_program,
|
|
const std::string &loss_var_name, Scope *scope)
|
|
: member_(new ParallelExecutorPrivate(places)) {
|
|
member_->global_scope_ = scope;
|
|
|
|
// Step 1. RunStartupProgram and Bcast the params to devs.
|
|
Executor exe(places[0]);
|
|
exe.Run(startup_program, scope, 0);
|
|
// Create local scopes
|
|
for (size_t i = 0; i < member_->places_.size(); ++i) {
|
|
member_->local_scopes_.push_back(&scope->NewScope());
|
|
}
|
|
|
|
// Bcast Parameters to all GPUs
|
|
BuildNCCLCommunicator();
|
|
if (platform::is_gpu_place(places[0]) &&
|
|
member_->local_scopes_.size() != 1) { // Is CUDA
|
|
BCastParamsToGPUs(startup_program);
|
|
}
|
|
// Startup Program has been run. All local scopes has correct parameters.
|
|
|
|
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
|
|
// ncclOp
|
|
details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
|
|
params, member_->local_scopes_,
|
|
member_->nccl_ctxs_.get());
|
|
auto graph = builder.Build(main_program);
|
|
|
|
member_->executor_.reset(new ThreadedSSAGraphExecutor(
|
|
num_threads, true, member_->local_scopes_, places, std::move(graph)));
|
|
|
|
// Step 3. Create vars in each scope;
|
|
for (auto *scope : member_->local_scopes_) {
|
|
for (auto *var : main_program.Block(0).AllVars()) {
|
|
if (scope->FindVar(var->Name()) != nullptr) {
|
|
continue;
|
|
}
|
|
|
|
InitializeVariable(scope->Var(var->Name()), var->GetType());
|
|
}
|
|
}
|
|
}
|
|
|
|
void ParallelExecutor::BCastParamsToGPUs(
|
|
const ProgramDesc &startup_program) const {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto *main_scope = member_->local_scopes_[0];
|
|
|
|
for (auto *var_desc : startup_program.Block(0).AllVars()) {
|
|
if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
|
|
auto &main_tensor =
|
|
main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
|
|
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
|
|
auto &dims = main_tensor.dims();
|
|
size_t numel = main_tensor.numel();
|
|
|
|
platform::NCCLGroupGuard guard;
|
|
|
|
for (size_t i = 0; i < member_->places_.size(); ++i) {
|
|
auto place = member_->places_[i];
|
|
void *buffer;
|
|
if (i == 0) {
|
|
buffer = const_cast<void *>(main_tensor.data<void>());
|
|
} else {
|
|
auto local_scope = member_->local_scopes_[i];
|
|
auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
|
|
t->Resize(dims);
|
|
buffer = t->mutable_data(place, main_tensor.type());
|
|
}
|
|
|
|
auto &nccl_ctx = member_->nccl_ctxs_->at(place);
|
|
platform::dynload::ncclBcast(buffer, numel, data_type, 0,
|
|
nccl_ctx.comm_, nccl_ctx.stream());
|
|
}
|
|
}
|
|
member_->nccl_ctxs_->WaitAll();
|
|
}
|
|
#else
|
|
PADDLE_THROW("Not compiled with CUDA");
|
|
#endif
|
|
}
|
|
|
|
void ParallelExecutor::BuildNCCLCommunicator() const {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
|
|
#endif
|
|
}
|
|
|
|
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
|
|
const std::string &fetched_var_name) {
|
|
auto fetch_data = member_->executor_->Run(fetch_tensors);
|
|
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
|
|
fetch_data;
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|