You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
7.8 KiB
194 lines
7.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
You may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/data_layout.h"
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/im2col.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
inline int Im2SeqOutputSize(int input_size, int filter_size, int padding_0,
|
|
int padding_1, int stride) {
|
|
const int output_size =
|
|
(input_size + padding_0 + padding_1 - filter_size) / stride + 1;
|
|
return output_size;
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class Im2SequenceKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const Tensor* in = ctx.Input<Tensor>("X");
|
|
LoDTensor* out = ctx.Output<LoDTensor>("Out");
|
|
auto in_dim = in->dims();
|
|
int batch_size = in_dim[0];
|
|
int img_channels = in_dim[1];
|
|
int img_height = in_dim[2];
|
|
int img_width = in_dim[3];
|
|
auto kernels = ctx.Attr<std::vector<int>>("kernels");
|
|
auto strides = ctx.Attr<std::vector<int>>("strides");
|
|
auto paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
if (ctx.HasInput("Y") && batch_size > 1) {
|
|
const Tensor* imgrealsize = ctx.Input<Tensor>("Y");
|
|
auto out_stride = ctx.Attr<std::vector<int>>("out_stride");
|
|
Tensor cpu_shape_tensor;
|
|
TensorCopySync(*imgrealsize, platform::CPUPlace(), &cpu_shape_tensor);
|
|
std::vector<int> imgreal_h;
|
|
std::vector<int> imgreal_w;
|
|
std::vector<int> output_height;
|
|
std::vector<int> output_width;
|
|
int result = 0;
|
|
for (int i = 0; i < batch_size; i++) {
|
|
int tmp_real_h = static_cast<int>((cpu_shape_tensor.data<T>())[2 * i]);
|
|
int tmp_real_w =
|
|
static_cast<int>((cpu_shape_tensor.data<T>())[2 * i + 1]);
|
|
if (tmp_real_h % out_stride[0] == 0) {
|
|
tmp_real_h = tmp_real_h / out_stride[0];
|
|
} else {
|
|
tmp_real_h = tmp_real_h / out_stride[0] + 1;
|
|
}
|
|
if (tmp_real_w % out_stride[1] == 0) {
|
|
tmp_real_w = tmp_real_w / out_stride[1];
|
|
} else {
|
|
tmp_real_w = tmp_real_w / out_stride[1] + 1;
|
|
}
|
|
imgreal_h.push_back(tmp_real_h);
|
|
imgreal_w.push_back(tmp_real_w);
|
|
output_height.push_back(Im2SeqOutputSize(
|
|
imgreal_h[i], kernels[0], paddings[0], paddings[2], strides[0]));
|
|
output_width.push_back(Im2SeqOutputSize(
|
|
imgreal_w[i], kernels[1], paddings[1], paddings[3], strides[1]));
|
|
result += output_height[i] * output_width[i];
|
|
}
|
|
|
|
out->mutable_data<T>({result, img_channels * kernels[0] * kernels[1]},
|
|
ctx.GetPlace());
|
|
|
|
const std::vector<int> dilations({1, 1});
|
|
int offset_out = 0;
|
|
for (int i = 0; i < batch_size; i++) {
|
|
const Tensor src =
|
|
in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
|
|
Tensor dst = out->Slice(offset_out,
|
|
offset_out + output_height[i] * output_width[i])
|
|
.Resize({output_height[i], output_width[i],
|
|
img_channels, kernels[0], kernels[1]});
|
|
offset_out += output_height[i] * output_width[i];
|
|
|
|
math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
f(dev_ctx, src, dilations, strides, paddings, &dst);
|
|
}
|
|
framework::LoD lod(1);
|
|
lod[0].reserve(batch_size + 1);
|
|
int offset = 0;
|
|
lod[0].push_back(offset);
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
offset += output_height[i] * output_width[i];
|
|
lod[0].push_back(offset);
|
|
}
|
|
out->set_lod(lod);
|
|
} else {
|
|
int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
|
|
paddings[2], strides[0]);
|
|
int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
|
|
paddings[3], strides[1]);
|
|
out->mutable_data<T>({batch_size * output_height * output_width,
|
|
img_channels * kernels[0] * kernels[1]},
|
|
ctx.GetPlace());
|
|
const std::vector<int> dilations({1, 1});
|
|
auto out_dims = out->dims();
|
|
out->Resize({batch_size, out->numel() / batch_size});
|
|
for (int i = 0; i < batch_size; i++) {
|
|
const Tensor src =
|
|
in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
|
|
Tensor dst =
|
|
out->Slice(i, i + 1).Resize({output_height, output_width,
|
|
img_channels, kernels[0], kernels[1]});
|
|
|
|
math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
f(dev_ctx, src, dilations, strides, paddings, &dst);
|
|
}
|
|
out->Resize(out_dims);
|
|
framework::LoD lod(1);
|
|
lod[0].reserve(batch_size + 1);
|
|
int offset = 0;
|
|
lod[0].push_back(offset);
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
offset += output_height * output_width;
|
|
lod[0].push_back(offset);
|
|
}
|
|
out->set_lod(lod);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class Im2SequenceGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
Tensor* d_out =
|
|
const_cast<Tensor*>(ctx.Input<Tensor>(framework::GradVarName("Out")));
|
|
auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
d_x->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto x_v = framework::EigenVector<T>::Flatten(*d_x);
|
|
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
|
|
x_v.device(place) = x_v.constant(0.0);
|
|
|
|
auto in_dim = in->dims();
|
|
int batch_size = in_dim[0];
|
|
int img_channels = in_dim[1];
|
|
int img_height = in_dim[2];
|
|
int img_width = in_dim[3];
|
|
|
|
auto kernels = ctx.Attr<std::vector<int>>("kernels");
|
|
auto strides = ctx.Attr<std::vector<int>>("strides");
|
|
auto paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
|
|
paddings[2], strides[0]);
|
|
int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
|
|
paddings[3], strides[1]);
|
|
|
|
const std::vector<int> dilations({1, 1});
|
|
|
|
auto d_out_dims = d_out->dims();
|
|
d_out->Resize({batch_size, d_out->numel() / batch_size});
|
|
for (int i = 0; i < batch_size; i++) {
|
|
Tensor dst =
|
|
d_x->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
|
|
const Tensor src = d_out->Slice(i, i + 1).Resize(
|
|
{output_height, output_width, img_channels, kernels[0], kernels[1]});
|
|
math::Col2ImFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
f(dev_ctx, src, dilations, strides, paddings, &dst);
|
|
}
|
|
d_out->Resize(d_out_dims);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|