You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/helper.h

281 lines
8.0 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <glog/logging.h>
#include <sys/time.h>
#include <algorithm>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/timer.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
namespace inference {
static void split(const std::string &str, char sep,
std::vector<std::string> *pieces) {
pieces->clear();
if (str.empty()) {
return;
}
size_t pos = 0;
size_t next = str.find(sep, pos);
while (next != std::string::npos) {
pieces->push_back(str.substr(pos, next - pos));
pos = next + 1;
next = str.find(sep, pos);
}
if (!str.substr(pos).empty()) {
pieces->push_back(str.substr(pos));
}
}
static void split_to_float(const std::string &str, char sep,
std::vector<float> *fs) {
std::vector<std::string> pieces;
split(str, sep, &pieces);
std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs),
[](const std::string &v) { return std::stof(v); });
}
static void split_to_int64(const std::string &str, char sep,
std::vector<int64_t> *is) {
std::vector<std::string> pieces;
split(str, sep, &pieces);
std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is),
[](const std::string &v) { return std::stoi(v); });
}
template <typename T>
std::string to_string(const std::vector<T> &vec) {
std::stringstream ss;
for (const auto &c : vec) {
ss << c << " ";
}
return ss.str();
}
template <>
std::string to_string<std::vector<float>>(
const std::vector<std::vector<float>> &vec);
template <>
std::string to_string<std::vector<std::vector<float>>>(
const std::vector<std::vector<std::vector<float>>> &vec);
template <typename T>
int VecReduceToInt(const std::vector<T> &v) {
return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; });
}
template <typename T>
static void TensorAssignData(PaddleTensor *tensor,
const std::vector<std::vector<T>> &data) {
// Assign buffer
int num_elems = VecReduceToInt(tensor->shape);
tensor->data.Resize(sizeof(T) * num_elems);
int c = 0;
for (const auto &f : data) {
for (T v : f) {
static_cast<T *>(tensor->data.data())[c++] = v;
}
}
}
template <typename T>
static int ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
const std::vector<std::vector<T>> &data) {
int size{0};
auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
int c = 0;
for (const auto &f : data) {
for (T v : f) {
ptr[c++] = v;
}
}
return size;
}
static std::string DescribeTensor(const PaddleTensor &tensor) {
std::stringstream os;
os << "Tensor [" << tensor.name << "]\n";
os << " - type: ";
switch (tensor.dtype) {
case PaddleDType::FLOAT32:
os << "float32";
break;
case PaddleDType::INT64:
os << "int64";
break;
default:
os << "unset";
}
os << '\n';
os << " - shape: " << to_string(tensor.shape) << '\n';
os << " - lod: ";
for (auto &l : tensor.lod) {
os << to_string(l) << "; ";
}
os << "\n";
os << " - data: ";
int dim = VecReduceToInt(tensor.shape);
for (int i = 0; i < dim; i++) {
os << static_cast<float *>(tensor.data.data())[i] << " ";
}
os << '\n';
return os.str();
}
static void PrintTime(int batch_size, int repeat, int num_threads, int tid,
double latency, int epoch = 1) {
LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat
<< ", threads: " << num_threads << ", thread id: " << tid
<< ", latency: " << latency << "ms ======";
if (epoch > 1) {
int samples = batch_size * epoch;
LOG(INFO) << "====== sample number: " << samples
<< ", average latency of each sample: " << latency / samples
<< "ms ======";
}
}
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
std::stringstream ss;
ss << "\n---- tensor ---" << '\n';
ss << "lod: [";
for (const auto &level : tensor.lod()) {
ss << "[ ";
for (auto i : level) {
ss << i << ", ";
}
ss << "]";
}
ss << "]\n";
ss << "shape: [";
int size = 1;
for (int i = 0; i < tensor.dims().size(); i++) {
int dim = tensor.dims()[i];
ss << dim << ", ";
size *= dim;
}
ss << "]\n";
ss << "data: ";
for (int i = 0; i < std::min(20, size); i++) {
ss << tensor.data<T>()[i] << " ";
}
ss << "\n";
return ss.str();
}
static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
if (a.size() != b.size()) {
LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
b.size());
return false;
}
for (size_t i = 0; i < a.size(); i++) {
auto &al = a[i];
auto &bl = b[i];
if (al.size() != bl.size()) {
LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
bl.size());
return false;
}
}
return true;
}
static bool CompareShape(const std::vector<int64_t> &a,
const std::vector<int64_t> &b) {
if (a.size() != b.size()) {
LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
b.size());
return false;
}
for (size_t i = 0; i < a.size(); i++) {
if (a[i] != b[i]) {
LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
a[i], b[i]);
return false;
}
}
return true;
}
static bool CompareTensorData(const framework::LoDTensor &a,
const framework::LoDTensor &b) {
auto a_shape = framework::vectorize(a.dims());
auto b_shape = framework::vectorize(b.dims());
size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
[](int a, int b) { return a * b; });
size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
[](int a, int b) { return a * b; });
if (a_size != b_size) {
LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
a_size, b_size);
}
for (size_t i = 0; i < a_size; i++) {
if (a.type() == typeid(float)) {
const auto *a_data = a.data<float>();
const auto *b_data = b.data<float>();
if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
LOG(ERROR) << string::Sprintf(
"tensor data %d-th element not match, %f != %f", i, a_data[i],
b_data[i]);
return false;
}
} else if (a.type() == typeid(int64_t)) {
const auto *a_data = a.data<int64_t>();
const auto *b_data = b.data<int64_t>();
if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
LOG(ERROR) << string::Sprintf(
"tensor data %d-th element not match, %f != %f", i, a_data[i],
b_data[i]);
return false;
}
}
}
return true;
}
static bool CompareTensor(const framework::LoDTensor &a,
const framework::LoDTensor &b) {
if (!CompareLoD(a.lod(), b.lod())) {
return false;
}
if (!CompareShape(framework::vectorize(a.dims()),
framework::vectorize(b.dims()))) {
return false;
}
if (!CompareTensorData(a, b)) {
return false;
}
return true;
}
} // namespace inference
} // namespace paddle