49 lines
1.4 KiB
49 lines
1.4 KiB
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def huber_loss_forward(val, delta):
|
|
abs_val = abs(val)
|
|
if abs_val <= delta:
|
|
return 0.5 * val * val
|
|
else:
|
|
return delta * (abs_val - 0.5 * delta)
|
|
|
|
|
|
class TestHuberLossOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'huber_loss'
|
|
samples_num = 64
|
|
delta = 1.0
|
|
self.inputs = {
|
|
'X': np.random.uniform(0, 1., (samples_num, 1)).astype('float32'),
|
|
'Y': np.random.uniform(0, 1., (samples_num, 1)).astype('float32'),
|
|
}
|
|
residual = self.inputs['Y'] - self.inputs['X']
|
|
loss = np.vectorize(huber_loss_forward)(residual,
|
|
delta).astype('float32')
|
|
self.attrs = {'delta': delta}
|
|
self.outputs = {
|
|
'Residual': residual,
|
|
'Out': loss.reshape((samples_num, 1))
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.008)
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
self.check_grad(
|
|
['Y'], 'Out', max_relative_error=0.008, no_grad_set=set("residual"))
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
self.check_grad(
|
|
['X'], 'Out', max_relative_error=0.008, no_grad_set=set('residual'))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|