You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
146 lines
3.6 KiB
146 lines
3.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
from .layer_function_generator import generate_layer_fn, generate_layer_fn_noattr
|
|
from .. import core
|
|
from ..framework import convert_np_dtype_to_dtype_
|
|
|
|
__activations_noattr__ = [
|
|
'sigmoid',
|
|
'logsigmoid',
|
|
'exp',
|
|
'tanh',
|
|
'tanh_shrink',
|
|
'softshrink',
|
|
'sqrt',
|
|
'abs',
|
|
'ceil',
|
|
'floor',
|
|
'cos',
|
|
'sin',
|
|
'round',
|
|
'reciprocal',
|
|
'square',
|
|
'softplus',
|
|
'softsign',
|
|
]
|
|
|
|
__all__ = []
|
|
|
|
for _OP in set(__all__):
|
|
globals()[_OP] = generate_layer_fn(_OP)
|
|
|
|
# It is a hot fix in some unittest using:
|
|
# fluid.layers.scale(x=x, scale=10.0, out=out_var)
|
|
# e.g.: test_program_code.py, test_dist_train.py
|
|
globals()['_scale'] = generate_layer_fn('scale')
|
|
|
|
globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')
|
|
|
|
__all__ += __activations_noattr__
|
|
|
|
for _OP in set(__activations_noattr__):
|
|
globals()[_OP] = generate_layer_fn_noattr(_OP)
|
|
|
|
__all__ += ["uniform_random"]
|
|
|
|
_uniform_random_ = generate_layer_fn('uniform_random')
|
|
|
|
|
|
def uniform_random(shape, dtype=None, min=None, max=None, seed=None):
|
|
locals_var = locals().keys()
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
kwargs = dict()
|
|
for name in locals_var:
|
|
val = locals()[name]
|
|
if val is not None:
|
|
kwargs[name] = val
|
|
return _uniform_random_(**kwargs)
|
|
|
|
|
|
uniform_random.__doc__ = _uniform_random_.__doc__ + """
|
|
Examples:
|
|
|
|
>>> result = fluid.layers.uniform_random(shape=[32, 784])
|
|
"""
|
|
|
|
__all__ += ['hard_shrink']
|
|
|
|
_hard_shrink_ = generate_layer_fn('hard_shrink')
|
|
|
|
|
|
def hard_shrink(x, threshold=None):
|
|
locals_var = locals().keys()
|
|
kwargs = dict()
|
|
for name in locals_var:
|
|
val = locals()[name]
|
|
if val is not None:
|
|
kwargs[name] = val
|
|
return _hard_shrink_(**kwargs)
|
|
|
|
|
|
hard_shrink.__doc__ = _hard_shrink_.__doc__ + """
|
|
Examples:
|
|
|
|
>>> data = fluid.layers.data(name="input", shape=[784])
|
|
>>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
|
|
"""
|
|
|
|
__all__ += ['cumsum']
|
|
|
|
_cum_sum_ = generate_layer_fn('cumsum')
|
|
|
|
|
|
def cumsum(x, axis=None, exclusive=None, reverse=None):
|
|
locals_var = locals().keys()
|
|
kwargs = dict()
|
|
for name in locals_var:
|
|
val = locals()[name]
|
|
if val is not None:
|
|
kwargs[name] = val
|
|
return _cum_sum_(**kwargs)
|
|
|
|
|
|
cumsum.__doc__ = _cum_sum_.__doc__ + """
|
|
Examples:
|
|
|
|
>>> data = fluid.layers.data(name="input", shape=[32, 784])
|
|
>>> result = fluid.layers.cumsum(data, axis=0)
|
|
"""
|
|
|
|
__all__ += ['thresholded_relu']
|
|
|
|
_thresholded_relu_ = generate_layer_fn('thresholded_relu')
|
|
|
|
|
|
def thresholded_relu(x, threshold=None):
|
|
locals_var = locals().keys()
|
|
kwargs = dict()
|
|
for name in locals_var:
|
|
val = locals()[name]
|
|
if val is not None:
|
|
kwargs[name] = val
|
|
|
|
_thresholded_relu_(**kwargs)
|
|
|
|
|
|
thresholded_relu.__doc__ = _thresholded_relu_.__doc__ + """
|
|
Examples:
|
|
|
|
>>> data = fluid.layers.data(name="input", shape=[1])
|
|
>>> result = fluid.layers.thresholded_relu(data, threshold=0.4)
|
|
"""
|