You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/framework/layers.py

820 lines
25 KiB

import paddle.v2.framework.core as core
from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, \
Operator
from paddle.v2.framework.initializer import ConstantInitializer, \
NormalInitializer
from paddle.v2.framework.layer_helper import LayerHelper, unique_name
import re
__all__ = [
'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
'batch_norm', 'accuracy'
]
def fc(input,
size,
param_attr=None,
bias_attr=True,
name=None,
act=None,
num_flatten_dims=1,
main_program=None,
startup_program=None):
# create helper
helper = LayerHelper('fc', **locals())
dtype = helper.input_dtype()
# mul
mul_results = []
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
] + [size]
w = helper.create_parameter(
attr=param_attr, shape=param_shape, dtype=dtype)
tmp = helper.create_tmp_variable(dtype)
helper.append_op(
type="mul",
inputs={
"X": input_var,
"Y": w,
},
outputs={"Out": tmp},
attrs={'x_num_col_dims': num_flatten_dims,
'y_num_col_dims': 1})
mul_results.append(tmp)
# sum
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
# add bias
pre_activation = helper.append_bias_op(pre_bias)
# add activation
return helper.append_activation(pre_activation)
def embedding(input,
size,
data_type='float32',
is_sparse=False,
param_attr=None,
main_program=None,
startup_program=None):
helper = LayerHelper('embedding', **locals())
w = helper.create_parameter(
attr=helper.param_attr, shape=size, dtype=data_type)
tmp = helper.create_tmp_variable(data_type)
helper.append_op(
type='lookup_table',
inputs={'Ids': input,
'W': w},
outputs={'Out': tmp},
attrs={'is_sparse': is_sparse})
return tmp
def data(name,
shape,
data_type='float32',
type=core.VarDesc.VarType.LOD_TENSOR,
append_batch_size=True,
main_program=None,
startup_program=None):
helper = LayerHelper('data', **locals())
shape = list(shape)
for i in xrange(len(shape)):
if shape[i] is None:
shape[i] = -1
append_batch_size = False
elif shape[i] < 0:
append_batch_size = False
if append_batch_size:
shape = [-1] + shape # append batch size as -1
return helper.create_global_variable(
name=name, shape=shape, dtype=data_type, type=type, stop_gradient=True)
def _convert_(name):
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
def _create_op_func_(op_type):
op_proto = OpProtoHolder.instance().get_op_proto(op_type)
not_intermediate_outputs = \
filter(lambda output: not output.intermediate, op_proto.outputs)
intermediate_outputs = \
filter(lambda output: output.intermediate, op_proto.outputs)
if len(not_intermediate_outputs) != 1:
raise ValueError(
"Only one not intermediate output operator can be automatically generated"
)
if not_intermediate_outputs[0].duplicable:
raise ValueError(
"Only not duplicable op can be automatically generated")
for output in intermediate_outputs:
if output.duplicable:
raise ValueError(
"Only when all intermediate ops are not duplicable, "
"this op can be automatically generated")
o_name = not_intermediate_outputs[0].name
intermediate_output_names = [output.name for output in intermediate_outputs]
def func(**kwargs):
helper = LayerHelper(op_type, **kwargs)
inputs = dict()
dtype = None
for ipt in op_proto.inputs:
name = _convert_(ipt.name)
val = kwargs.pop(name, [])
if not isinstance(val, list) and not isinstance(val, tuple):
val = [val]
for each in val:
if not isinstance(each, Variable):
raise ValueError("input of {0} must be variable".format(
op_type))
if dtype is None:
dtype = each.data_type
elif dtype != each.data_type:
raise ValueError(
"operator {0} must input same dtype".format(op_type))
inputs[ipt.name] = val
outputs = dict()
out = helper.create_tmp_variable(dtype=dtype)
outputs[o_name] = [out]
for name in intermediate_output_names:
outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
helper.append_op(
type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
return helper.append_activation(out)
func.__name__ = op_type
globals()[op_type] = func
global __all__
__all__.append(op_type)
_create_op_func_('mean')
_create_op_func_('mul')
_create_op_func_('elementwise_add')
_create_op_func_('dropout')
_create_op_func_('reshape')
_create_op_func_('elementwise_add')
_create_op_func_('sigmoid')
_create_op_func_('scale')
def cast(x, data_type, main_program=None):
helper = LayerHelper('cast', **locals())
out = helper.create_tmp_variable(dtype=data_type)
helper.append_op(
type='cast',
inputs={'X': [x]},
outputs={'Out': [out]},
attrs={'in_data_type': x.data_type,
'out_data_type': out.data_type})
return out
def concat(input, axis, main_program=None, startup_program=None):
helper = LayerHelper('concat', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='concat',
inputs={'X': input},
outputs={'Out': [out]},
attrs={'axis': axis})
return out
def sums(input, main_program=None, startup_program=None):
helper = LayerHelper('sum', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
return out
def cos_sim(X, Y, **kwargs):
helper = LayerHelper('cos_sim', **kwargs)
out = helper.create_tmp_variable(dtype=X.data_type)
xnorm = helper.create_tmp_variable(dtype=X.data_type)
ynorm = helper.create_tmp_variable(dtype=X.data_type)
helper.append_op(
type='cos_sim',
inputs={'X': [X],
'Y': [Y]},
outputs={'Out': [out],
'XNorm': [xnorm],
'YNorm': [ynorm]})
return out
def cross_entropy(input, label, **kwargs):
helper = LayerHelper('cross_entropy', **kwargs)
out = helper.create_tmp_variable(dtype=input.data_type)
helper.append_op(
type='cross_entropy',
inputs={'X': [input],
'Label': [label]},
outputs={'Y': [out]},
attrs=kwargs)
return out
def square_error_cost(input, label, **kwargs):
helper = LayerHelper('square_error_cost', **kwargs)
minus_out = helper.create_tmp_variable(dtype=input.data_type)
helper.append_op(
type='elementwise_sub',
inputs={'X': [input],
'Y': [label]},
outputs={'Out': [minus_out]})
square_out = helper.create_tmp_variable(dtype=input.data_type)
helper.append_op(
type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
return square_out
def accuracy(input, label, k=1, **kwargs):
helper = LayerHelper("accuracy", **kwargs)
topk_out = helper.create_tmp_variable(dtype=input.data_type)
topk_indices = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="top_k",
inputs={"X": [input]},
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
acc_out_dtype = kwargs.get("out_dtype", "float32")
acc_out = helper.create_tmp_variable(dtype=acc_out_dtype)
helper.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={"Accuracy": [acc_out]})
return acc_out
def sequence_conv(input,
num_filters,
filter_size=3,
filter_stride=1,
act=None,
padding=None,
bias_attr=None,
param_attr=None,
main_program=None,
startup_program=None):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes.
# such as, padding_trainable, context_start.
helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype()
filter_shape = [filter_size * input.shape[1], num_filters]
filter = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type='sequence_conv',
inputs={
'X': [input],
'Filter': [filter],
},
outputs={"Out": pre_bias},
attrs={
'contextStride': filter_stride,
'contextStart': -int(filter_size / 2),
'contextLength': filter_size
})
pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)
def conv2d(input,
num_filters,
name=None,
filter_size=[1, 1],
act=None,
groups=None,
stride=[1, 1],
padding=None,
bias_attr=None,
param_attr=None,
main_program=None,
startup_program=None):
helper = LayerHelper('conv2d', **locals())
dtype = helper.input_dtype()
num_channels = input.shape[1]
if groups is None:
num_filter_channels = num_channels
else:
if num_channels % groups is not 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = num_channels / groups
if isinstance(filter_size, int):
filter_size = [filter_size, filter_size]
if isinstance(stride, int):
stride = [stride, stride]
if isinstance(padding, int):
padding = [padding, padding]
input_shape = input.shape
filter_shape = [num_filters, num_filter_channels] + filter_size
std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
filter = helper.create_parameter(
attr=helper.param_attr,
shape=filter_shape,
dtype=dtype,
initializer=NormalInitializer(0.0, std, 0))
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type='conv2d',
inputs={
'Input': input,
'Filter': filter,
},
outputs={"Output": pre_bias},
attrs={'strides': stride,
'paddings': padding,
'groups': groups})
pre_act = helper.append_bias_op(pre_bias, 1)
return helper.append_activation(pre_act)
def sequence_pool(input, pool_type, **kwargs):
helper = LayerHelper('sequence_pool', input=input, **kwargs)
dtype = helper.input_dtype()
pool_out = helper.create_tmp_variable(dtype)
max_index = helper.create_tmp_variable(dtype)
helper.append_op(
type="sequence_pool",
inputs={"X": input},
outputs={"Out": pool_out,
"MaxIndex": max_index},
attrs={"pooltype": pool_type.upper()})
return pool_out
def pool2d(input,
pool_size,
pool_type,
pool_stride=[1, 1],
pool_padding=[0, 0],
global_pooling=False,
main_program=None,
startup_program=None):
if pool_type not in ["max", "avg"]:
raise ValueError(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
str(pool_type))
if isinstance(pool_size, int):
pool_size = [pool_size, pool_size]
if isinstance(pool_stride, int):
pool_stride = [pool_stride, pool_stride]
if isinstance(pool_padding, int):
pool_padding = [pool_padding, pool_padding]
helper = LayerHelper('pool2d', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_tmp_variable(dtype)
helper.append_op(
type="pool2d",
inputs={"X": input},
outputs={"Out": pool_out},
attrs={
"poolingType": pool_type,
"ksize": pool_size,
"globalPooling": global_pooling,
"strides": pool_stride,
"paddings": pool_padding
})
return pool_out
def batch_norm(input,
act=None,
is_test=False,
momentum=0.9,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
data_layout='NCHW',
main_program=None,
startup_program=None):
helper = LayerHelper('batch_norm', **locals())
dtype = helper.input_dtype()
input_shape = input.shape
if data_layout == 'NCHW':
channel_num = input_shape[1]
else:
if data_layout == 'NHWC':
channel_num = input_shape[-1]
else:
raise ValueError("unsupported data layout:" + data_layout)
param_shape = [channel_num]
# create parameter
scale = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
initializer=ConstantInitializer(1.0))
bias = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
initializer=ConstantInitializer(0.0))
mean = helper.create_global_variable(
dtype=input.data_type, shape=param_shape, persistable=True)
helper.set_variable_initializer(
var=mean, initializer=ConstantInitializer(0.0))
variance = helper.create_global_variable(
dtype=input.data_type, shape=param_shape, persistable=True)
helper.set_variable_initializer(
var=variance, initializer=ConstantInitializer(1.0))
# create output
# mean and mean_out share the same memory
mean_out = mean
# variance and variance out share the same memory
variance_out = variance
saved_mean = helper.create_tmp_variable(dtype)
saved_variance = helper.create_tmp_variable(dtype)
batch_norm_out = helper.create_tmp_variable(dtype)
helper.append_op(
type="batch_norm",
inputs={
"X": input,
"Scale": scale,
"Bias": bias,
"Mean": mean,
"Variance": variance
},
outputs={
"Y": batch_norm_out,
"MeanOut": mean_out,
"VarianceOut": variance_out,
"SavedMean": saved_mean,
"SavedVariance": saved_variance
},
attrs={"momentum": momentum,
"epsilon": epsilon,
"is_test": is_test})
return helper.append_activation(batch_norm_out)
class BlockGuard(object):
"""
BlockGuard used to create sub-block in program by using Python `with`
keyword.
"""
def __init__(self, main_program):
if not isinstance(main_program, Program):
raise TypeError("BlockGuard takes a program")
self.main_program = main_program
def __enter__(self):
self.main_program.create_block()
def __exit__(self, exc_type, exc_val, exc_tb):
self.main_program.rollback()
if exc_type is not None:
return False # re-raise exception
return True
class StaticRNNGuard(BlockGuard):
def __init__(self, rnn):
if not isinstance(rnn, StaticRNN):
raise TypeError("StaticRNNGuard takes an StaticRNN")
super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
self.rnn = rnn
def __enter__(self):
self.rnn.status = StaticRNN.IN_RNN_BLOCK
return super(StaticRNNGuard, self).__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
if exc_type is not None:
return False
self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
self.rnn.complete_rnn_op()
return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)
class StaticRNNMemoryLink(object):
"""
:param init: the initial variable for Memory
:type init: Variable
:param pre_mem: the memory variable in previous time step
:type pre_mem: Variable
:param mem: the memory variable in current time step
:type mem: Variable
"""
def __init__(self, init, pre_mem, mem=None):
self.init = init
self.pre_mem = pre_mem
self.mem = mem
class StaticRNN(object):
BEFORE_RNN_BLOCK = 0
IN_RNN_BLOCK = 1
AFTER_RNN_BLOCK = 2
def __init__(self, name=None, main_program=None):
self.helper = LayerHelper(
"static_rnn", name=name, main_program=main_program)
self.memories = {} # memory map, from pre_mem.name --> MemoryLink
self.inputs = [] # input variable list in current block
self.outputs = [] # output variable list in parent block
self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag.
# sequence length, since it is a static RNN, sequence length are fixed.
self.seq_len = None
def step(self):
return StaticRNNGuard(self)
def _assert_in_rnn_block_(self, method):
if self.status != StaticRNN.IN_RNN_BLOCK:
raise ValueError("You must invoke {0} in rnn block".format(method))
def memory(self, init=None, shape=None, dtype=None, init_value=0):
self._assert_in_rnn_block_('memory')
if init is None:
if shape is None or dtype is None:
raise ValueError(
"if init is None, memory at least need shape and dtype")
parent_block = self.parent_block()
var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
boot_var = parent_block.create_var(
name=var_name, shape=shape, dtype=dtype, persistable=False)
parent_block.append_op(
type="fill_constant",
inputs={},
outputs={'Out': [boot_var]},
attrs={
'value': init_value,
'shape': [40] + list(boot_var.shape[1:]),
'data_type': boot_var.data_type
})
return self.memory(init=boot_var)
else:
pre_mem = self.helper.create_variable(
name=unique_name("@".join([self.helper.name, "mem"])),
dtype=init.data_type,
shape=init.shape)
self.memories[pre_mem.name] = StaticRNNMemoryLink(
init=init, pre_mem=pre_mem)
return pre_mem
def step_input(self, x):
self._assert_in_rnn_block_('step_input')
if not isinstance(x, Variable):
raise TypeError("step input takes a Variable")
if self.seq_len is None:
self.seq_len = x.shape[0]
elif self.seq_len != x.shape[0]:
raise ValueError("Static RNN only take fix seq_len input")
ipt = self.helper.create_variable(
name=x.name,
dtype=x.data_type,
shape=list(x.shape[1:]),
type=x.type)
self.inputs.append(ipt)
return ipt
def step_output(self, o):
self._assert_in_rnn_block_('step_output')
if not isinstance(o, Variable):
raise TypeError("step output takes a Variable")
tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
self.helper.append_op(
type='rnn_memory_helper',
inputs={'X': [o]},
outputs={'Out': tmp_o},
attrs={'data_type': o.data_type})
out_var = self.parent_block().create_var(
name=tmp_o.name,
shape=[self.seq_len] + list(tmp_o.shape),
dtype=tmp_o.data_type)
self.outputs.append(out_var)
def output(self, *outputs):
for each in outputs:
self.step_output(each)
def update_memory(self, mem, var):
if not isinstance(mem, Variable) or not isinstance(var, Variable):
raise TypeError("update memory should take variables")
self.memories[mem.name].mem = var
def parent_block(self):
prog = self.helper.main_program
parent_idx = prog.current_block().parent_idx
assert parent_idx >= 0
parent_block = prog.block(parent_idx)
return parent_block
def __call__(self, *args, **kwargs):
if self.status != StaticRNN.AFTER_RNN_BLOCK:
raise ValueError("RNN output can only be retrieved after rnn block")
if len(self.outputs) == 0:
raise ValueError("RNN has no output")
elif len(self.outputs) == 1:
return self.outputs[0]
else:
return self.outputs
def complete_rnn_op(self):
main_program = self.helper.main_program
rnn_block = main_program.current_block()
parent_block = self.parent_block()
local_inputs = set()
for op in rnn_block.ops:
assert isinstance(op, Operator)
for oname in op.output_names:
for out_var_name in op.output(oname):
local_inputs.add(out_var_name)
for var in self.inputs:
local_inputs.add(var.name)
for m in self.memories:
local_inputs.add(m)
params = list()
for op in rnn_block.ops:
assert isinstance(op, Operator)
for iname in op.input_names:
for in_var_name in op.input(iname):
if in_var_name not in local_inputs:
params.append(in_var_name)
parameters = [parent_block.var(name) for name in params]
step_scope = parent_block.create_var(
type=core.VarDesc.VarType.STEP_SCOPES)
inlinks = [parent_block.var(i.name) for i in self.inputs]
outlinks = self.outputs
boot_memories = []
pre_memories = []
memories = []
for _, mem in self.memories.iteritems():
boot_memories.append(mem.init)
pre_memories.append(mem.pre_mem.name)
mem_var = rnn_block.var(mem.mem.name)
assert isinstance(mem_var, Variable)
new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)
rnn_block.append_op(
type='rnn_memory_helper',
inputs={'X': [mem_var]},
outputs={'Out': [new_mem]},
attrs={'data_type': mem_var.data_type})
memories.append(new_mem.name)
parent_block.append_op(
type='recurrent',
inputs={
'inputs': inlinks,
'initial_states': boot_memories,
'parameters': parameters
},
outputs={'outputs': outlinks,
'step_scopes': [step_scope]},
attrs={
'ex_states': pre_memories,
'states': memories,
'step_block': rnn_block
})
def lod_rank_table(x, level=0, main_program=None):
helper = LayerHelper("lod_rank_table", **locals())
table = helper.create_variable(
type=core.VarDesc.VarType.LOD_RANK_TABLE,
name=unique_name("lod_rank_table"))
helper.append_op(
type='lod_rank_table',
inputs={'X': x},
outputs={'Out': table},
attrs={'level': level})
return table
def fill_constant(shape, dtype, value, main_program=None):
helper = LayerHelper("ones", **locals())
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant',
inputs={},
outputs={'Out': [out]},
attrs={
'shape': shape,
'data_type': out.data_type,
'value': float(value)
})
out.stop_gradient = True
return out
def ones(shape, dtype, main_program=None):
return fill_constant(value=1.0, **locals())
def zeros(shape, dtype, main_program=None):
return fill_constant(value=0.0, **locals())
def increment(x, value=1.0, main_program=None):
helper = LayerHelper("increment", **locals())
helper.append_op(
type='increment',
inputs={'X': [x]},
outputs={'Out': [x]},
attrs={'step': value})
return x
def array_write(x, i, array=None, main_program=None):
helper = LayerHelper('array_write', **locals())
if array is None:
array = helper.create_variable(
name="{0}.out".format(helper.name),
type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
dtype=x.data_type)
helper.append_op(
type='write_to_array',
inputs={'X': [x],
'I': [i]},
outputs={'Out': [array]})
return array
def array_read(array, i, main_program=None):
helper = LayerHelper('array_read', **locals())
if not isinstance(
array,
Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
raise TypeError("array should be tensor array vairable")
out = helper.create_tmp_variable(dtype=array.data_type)
helper.append_op(
type='read_from_array',
inputs={'X': [array],
'I': [i]},
outputs={'Out': [out]})
return out