You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
6.0 KiB
180 lines
6.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
|
|
|
|
class TestBase(unittest.TestCase):
|
|
def setup(self, centered, epsilon=1e-6):
|
|
np.random.seed(5) # fix seed
|
|
|
|
self.param_name = "param"
|
|
self.param = np.random.random((123, 321)).astype("float32")
|
|
|
|
self.mean_square_name = "mean_square"
|
|
self.mean_square = np.random.random((123, 321)).astype("float32")
|
|
|
|
self.mean_grad_name = "mean_grad"
|
|
self.mean_grad = np.random.random((123, 321)).astype("float32")
|
|
|
|
self.lr_name = "lr"
|
|
self.learning_rate = np.array([0.01]).astype("float32")
|
|
|
|
self.grad_name = "grad"
|
|
self.grad = np.random.random((123, 321)).astype("float32")
|
|
|
|
self.moment_name = "moment"
|
|
self.moment = np.zeros((123, 321)).astype("float32")
|
|
|
|
self.epsilon = epsilon
|
|
self.decay = 0.9
|
|
self.momentum = 0.0
|
|
self.centered = centered
|
|
|
|
self.ms_out = self.decay * self.mean_square + (1 - self.decay
|
|
) * self.grad * self.grad
|
|
if centered:
|
|
self.mg_out = self.decay * self.mean_grad + (1 - self.decay
|
|
) * self.grad
|
|
self.moment_out = self.momentum * self.moment + \
|
|
self.learning_rate * self.grad / np.sqrt(self.ms_out - np.square(self.mg_out) + self.epsilon)
|
|
else:
|
|
self.moment_out = self.momentum * self.moment + \
|
|
self.learning_rate * self.grad / np.sqrt(self.ms_out + self.epsilon)
|
|
|
|
self.param_out = self.param - self.moment_out
|
|
|
|
def check(self,
|
|
actual_t,
|
|
expect_t,
|
|
place,
|
|
out_name,
|
|
atol=1e-5,
|
|
equal_nan=False):
|
|
self.assertTrue(
|
|
np.allclose(
|
|
actual_t, expect_t, atol=atol, equal_nan=equal_nan),
|
|
"Output (" + out_name + ") has diff at " + str(place) + "\nExpect "
|
|
+ str(expect_t) + "\n" + "But Got" + str(actual_t))
|
|
|
|
|
|
class TestRmspropOp(TestBase):
|
|
def check_with_place(self, place, centered, epsilon):
|
|
self.setup(centered, epsilon)
|
|
scope = core.Scope()
|
|
|
|
# create and initialize Param Variable
|
|
param = scope.var(self.param_name).get_tensor()
|
|
param.set(self.param, place)
|
|
|
|
mean_square = scope.var(self.mean_square_name).get_tensor()
|
|
mean_square.set(self.mean_square, place)
|
|
|
|
lr = scope.var(self.lr_name).get_tensor()
|
|
lr.set(self.learning_rate, place)
|
|
|
|
grad = scope.var(self.grad_name).get_tensor()
|
|
grad.set(self.grad, place)
|
|
|
|
moment = scope.var(self.moment_name).get_tensor()
|
|
moment.set(self.moment, place)
|
|
|
|
# create and run sgd operator
|
|
|
|
if self.centered:
|
|
mean_grad = scope.var(self.mean_grad_name).get_tensor()
|
|
mean_grad.set(self.mean_grad, place)
|
|
|
|
rmsprop_op = Operator(
|
|
"rmsprop",
|
|
Param=self.param_name,
|
|
Grad=self.grad_name,
|
|
MeanSquare=self.mean_square_name,
|
|
MeanGrad=self.mean_grad_name,
|
|
Moment=self.moment_name,
|
|
LearningRate=self.lr_name,
|
|
ParamOut=self.param_name,
|
|
MeanSquareOut=self.mean_square_name,
|
|
MomentOut=self.moment_name,
|
|
MeanGradOut=self.mean_grad_name,
|
|
epsilon=self.epsilon,
|
|
decay=self.decay,
|
|
momentum=self.momentum,
|
|
centered=True)
|
|
else:
|
|
rmsprop_op = Operator(
|
|
"rmsprop",
|
|
Param=self.param_name,
|
|
Grad=self.grad_name,
|
|
MeanSquare=self.mean_square_name,
|
|
Moment=self.moment_name,
|
|
LearningRate=self.lr_name,
|
|
ParamOut=self.param_name,
|
|
MeanSquareOut=self.mean_square_name,
|
|
MomentOut=self.moment_name,
|
|
epsilon=self.epsilon,
|
|
decay=self.decay,
|
|
momentum=self.momentum,
|
|
centered=False)
|
|
|
|
rmsprop_op.run(scope, place)
|
|
|
|
atol = 1e-5
|
|
equal_nan = False
|
|
|
|
if self.centered:
|
|
atol = 1e-3
|
|
equal_nan = True
|
|
|
|
self.check(
|
|
np.array(mean_square), self.ms_out, place, self.mean_square_name)
|
|
self.check(
|
|
np.array(moment),
|
|
self.moment_out,
|
|
place,
|
|
self.moment_name,
|
|
atol=atol,
|
|
equal_nan=equal_nan)
|
|
self.check(
|
|
np.array(param),
|
|
self.param_out,
|
|
place,
|
|
self.param_name,
|
|
atol=atol,
|
|
equal_nan=equal_nan)
|
|
|
|
if self.centered:
|
|
self.check(
|
|
np.array(mean_grad), self.mg_out, place, self.mean_grad_name)
|
|
|
|
def test_rmsprop(self):
|
|
places = [core.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(core.CUDAPlace(0))
|
|
for place in places:
|
|
self.check_with_place(place, False, 1e-6)
|
|
self.check_with_place(place, False, 1e-10)
|
|
self.check_with_place(place, True, 1e-6)
|
|
self.check_with_place(place, True, 1e-10)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|