Paddle/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py

1317 lines
55 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import numpy as np
from ..... import compat as cpt
from .... import core
from ....framework import IrGraph
from ....framework import IrNode
from .... import unique_name
__all__ = [
'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
'TransformForMobilePass', 'ScaleForTrainingPass', 'ScaleForInferencePass',
'AddQuantDequantPass'
]
_quantizable_op_list = ['conv2d', 'depthwise_conv2d', 'mul', 'pool2d']
_fake_quant_op_list = [
'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]
_fake_dequant_op_list = [
'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]
_out_scale_op_list = [
"mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid", "depthwise_conv2d",
"batch_norm", "concat", "tanh", "pad", "elementwise_add", "elementwise_mul",
"dropout", "split", "prelu", "conv2d_transpose", "leaky_relu"
]
def _init_var_node(var_node, value, scope, place):
assert isinstance(value,
np.ndarray), 'The type of value should be numpy array.'
assert scope is not None, \
'The scope cannot be set None.'
assert place is not None, \
'The place cannot be set None.'
tensor = scope.var(var_node.name()).get_tensor()
tensor.set(value, place)
class QuantizationTransformPass(object):
def __init__(self,
scope=None,
place=None,
weight_bits=8,
activation_bits=8,
activation_quantize_type='abs_max',
weight_quantize_type='abs_max',
window_size=10000,
moving_rate=0.9,
skip_pattern='skip_quant'):
"""
Convert and rewrite the IrGraph according to weight and
activation quantization type.
Args:
scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
type, this pass will create some new parameters. The scope is used to
initialize these new parameters.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
parameters described above.
weight_bits (int): quantization bit number for weights,
the bias is not quantized.
activation_bits (int): quantization bit number for activation.
activation_quantize_type (str): quantization type for activation,
now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
If use 'abs_max' mode, the quantization scale will be calculated
dynamically each step in both training and testing period. If use
'range_abs_max', a static quantization scale will be calculated
during training and used in inference.
weight_quantize_type (str): quantization type for weights,
support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
usually is not used for weight, since weights are fixed once the
model is well trained.
window_size (int): the window size for 'range_abs_max' quantization.
skip_pattern(str): The user-defined quantization skip pattern, which
will be presented in the name scope of an op. When the skip pattern is
detected in an op's name scope, the corresponding op will not be quantized.
Examples:
.. code-block:: python
# The original graph will be rewrite.
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization \
import QuantizationTransformPass
from paddle.fluid.contrib.slim.graph import IrGraph
from paddle.fluid import core
graph = IrGraph(core.Graph(program.desc), for_test=False)
place = fluid.CPUPlace()
transform_pass = QuantizationTransformPass(fluid.global_scope(),
place)
transform_pass.apply(graph)
"""
self._scope = scope
self._place = place
self._weight_bits = weight_bits
self._activation_bits = activation_bits
self._skip_pattern = skip_pattern
quant_type = [
'abs_max', 'channel_wise_abs_max', 'range_abs_max',
'moving_average_abs_max'
]
assert activation_quantize_type != 'channel_wise_abs_max', "The activation quantization type does not support 'channel_wise_abs_max'."
if activation_quantize_type not in quant_type:
raise ValueError(
"Unknown activation_quantize_type : '%s'. It can only be "
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
(str(activation_quantize_type)))
if weight_quantize_type not in quant_type:
raise ValueError(
"Unknown weight_quantize_type: '%s'. It can only be "
"'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
% (str(weight_quantize_type)))
self._activation_quantize_type = activation_quantize_type
self._weight_quantize_type = weight_quantize_type
self._window_size = window_size
self._moving_rate = moving_rate
self._quantizable_ops = _quantizable_op_list
self._conv_ops = ['conv2d', 'depthwise_conv2d']
self._quantizable_grad_ops = [
'%s_grad' % (op) for op in self._quantizable_ops
]
self._is_test = None
self._global_step = None
def apply(self, graph):
"""
Quantize the graph for training process. According to weight and
activation quantization type, the graph will be added some fake
quantize operators and fake dequantize operators.
Args:
graph(IrGraph): the applied graph.
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
self._is_test = graph.is_test()
# marked the variable which has been dequantized.
dequantized_vars = collections.OrderedDict()
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
def _quant_preprocess(op_node):
pool_skipped = op_node.op().has_attr("pooling_type") and \
op_node.op().attr("pooling_type") == 'avg'
user_skipped = isinstance(self._skip_pattern, str) and \
op_node.op().has_attr("op_namescope") and \
op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
if pool_skipped or user_skipped:
op_node.op()._set_attr("skip_quant", True)
def _transform_forward(graph, op):
for var_node in op.inputs:
if var_node.name() not in op.input_arg_names():
continue
if var_node.name() in dequantized_vars:
dequant_var_node = dequantized_vars[var_node.name()]
else:
quant_bits = self._weight_bits if var_node.name() in persistable_vars \
else self._activation_bits
quant_type = self._weight_quantize_type if var_node.name() \
in persistable_vars else self._activation_quantize_type
if quant_type == 'channel_wise_abs_max':
assert var_node.name(
) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights."
if op.name() in self._conv_ops:
quant_var_node, scale_var_node = self._insert_channel_quant_op(
graph, var_node, quant_bits)
dequant_var_node = self._insert_channel_dequant_op(
graph, quant_var_node, [scale_var_node],
[quant_bits])
else:
quant_var_node, scale_var_node = self._insert_quant_op(
graph, var_node, quant_bits, 'abs_max')
dequant_var_node = self._insert_dequant_op(
graph, quant_var_node, scale_var_node,
quant_bits)
else:
quant_var_node, scale_var_node = self._insert_quant_op(
graph, var_node, quant_bits, quant_type)
dequant_var_node = self._insert_dequant_op(
graph, quant_var_node, scale_var_node, quant_bits)
dequantized_vars[var_node.name()] = dequant_var_node
graph.update_input_link(var_node, dequant_var_node, op)
def _transform_backward(graph, op):
no_dequanted_input_vars = True
for var_node in op.inputs:
if var_node.name() not in op.input_arg_names():
continue
if var_node.name() in dequantized_vars:
dequant_var_node = dequantized_vars[var_node.name()]
graph.update_input_link(var_node, dequant_var_node, op)
no_dequanted_input_vars = False
if no_dequanted_input_vars:
raise ValueError("There is no dequanted inputs for op %s." %
(op.name()))
if not self._is_test:
self._create_global_step(graph)
ops = graph.all_op_nodes()
# Do the preproccess of quantization, such as skipping some ops
# for not being quantized.
for op in ops:
if op.name() in self._quantizable_ops or \
op.name() in self._quantizable_grad_ops:
_quant_preprocess(op)
# The process of _transform_forward and _transform_backward is needed in two for loops.
# The loop for transforming the forward graph:
for op in ops:
if op.name() in self._quantizable_ops:
skipped = op.op().has_attr("skip_quant") and \
op.op().attr("skip_quant")
if skipped:
continue
_transform_forward(graph, op)
# The loop for renaming the inputs of backward op.
for op in ops:
if op.name() in self._quantizable_grad_ops:
skipped = op.op().has_attr("skip_quant") and \
op.op().attr("skip_quant")
if skipped:
continue
_transform_backward(graph, op)
graph.resolve_hazard()
return graph
def _create_global_step(self, graph):
if self._weight_quantize_type == 'range_abs_max' or \
self._activation_quantize_type == 'range_abs_max':
counter_name = cpt.to_text('@STEP_COUNTER@')
for node in graph.all_var_nodes():
if node.name() == counter_name:
self._global_step = node
if self._global_step is None:
global_step_in = graph.create_persistable_node(
name=counter_name,
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=core.VarDesc.VarType.INT64)
_init_var_node(
global_step_in,
np.zeros(
[1], dtype='int64'),
self._scope,
self._place)
global_step_out = graph.create_var_node_from_desc(
global_step_in.var())
# The attribute of `op_role` is needed by ParallelExecutor.
increment_op = graph.create_op_node(
op_type='increment',
attrs={
'step': 1.0,
'op_role':
core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': global_step_in},
outputs={'Out': global_step_out})
graph.link_to(global_step_in, increment_op)
graph.link_to(increment_op, global_step_out)
self._global_step = global_step_out
def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
"""
Insert fake_quantize_op in the graph.
"""
if quant_type == 'abs_max':
return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
elif quant_type == 'range_abs_max':
return self._insert_quant_range_abs_max_op(graph, var_node,
quant_bits)
elif quant_type == 'moving_average_abs_max':
return self._insert_quant_moving_average_abs_max_op(graph, var_node,
quant_bits)
def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
"""
Insert fake_quantize_abs_max op in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_var_node = graph.create_var_node(
name=self._quantized_scale_name(var_node.name()),
var_type=var_node.type(),
shape=[1],
var_dtype=var_node.dtype())
quant_op_node = graph.create_op_node(
op_type='fake_quantize_abs_max',
attrs={
'bit_length': quant_bits,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node},
outputs={'Out': quant_var_node,
'OutScale': scale_var_node})
graph.link_to(var_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_var_node)
return quant_var_node, scale_var_node
def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
"""
Insert fake_quantize_range_abs_max on the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_in_node = graph.create_persistable_node(
name=self._quantized_scale_name(var_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[0.001], dtype=data_type),
self._scope,
self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
inputs = {'X': var_node, 'InScale': scale_in_node}
outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}
if not self._is_test:
# The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
scales_node = graph.create_persistable_node(
name=unique_name.generate('scales'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[self._window_size],
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scales_node,
np.zeros(
[self._window_size], dtype=data_type),
self._scope,
self._place)
inputs['Iter'] = self._global_step
outputs['OutScales'] = scales_node
attrs = {
'window_size': self._window_size,
'bit_length': quant_bits,
'is_test': self._is_test,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
}
quant_op_node = graph.create_op_node(
op_type='fake_quantize_range_abs_max',
attrs=attrs,
inputs=inputs,
outputs=outputs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_in_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_out_node)
if not self._is_test:
graph.link_to(self._global_step, quant_op_node)
graph.link_to(quant_op_node, scales_node)
return quant_var_node, scale_out_node
def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
quant_bits):
"""Insert fake_quantize_moving_average_abs_max
"""
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_in_node = graph.create_persistable_node(
name=self._quantized_scale_name(var_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[0.001], dtype=data_type),
self._scope,
self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
ins = {'X': var_node, 'InScale': scale_in_node}
outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
if not self._is_test:
state_in_node = graph.create_persistable_node(
name=unique_name.generate('state'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('accum'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
state_out_node = graph.create_var_node_from_desc(state_in_node.var(
))
accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
))
ins['InState'] = state_in_node
ins['InAccum'] = accum_in_node
outs['OutState'] = state_out_node
outs['OutAccum'] = accum_out_node
attrs = {
'bit_length': quant_bits,
'moving_rate': self._moving_rate,
'is_test': self._is_test,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
}
quant_op_node = graph.create_op_node(
op_type='fake_quantize_moving_average_abs_max',
attrs=attrs,
inputs=ins,
outputs=outs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_in_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_out_node)
if not self._is_test:
graph.link_to(state_in_node, quant_op_node)
graph.link_to(accum_in_node, quant_op_node)
graph.link_to(quant_op_node, state_out_node)
graph.link_to(quant_op_node, accum_out_node)
return quant_var_node, scale_out_node
def _insert_channel_quant_op(self, graph, var_node, quant_bits):
"""
Insert fake_channel_wise_quantize_abs_max op in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_var_node = graph.create_var_node(
name=self._quantized_scale_name(var_node.name()),
var_type=var_node.type(),
shape=[var_node.shape()[0]],
var_dtype=var_node.dtype())
quant_op_node = graph.create_op_node(
op_type='fake_channel_wise_quantize_abs_max',
attrs={
'bit_length': quant_bits,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node},
outputs={'Out': quant_var_node,
'OutScale': scale_var_node})
graph.link_to(var_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_var_node)
return quant_var_node, scale_var_node
def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
"""
Insert fake_dequantize_op in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
max_range = (1 << (quant_bits - 1)) - 1
dequant_op_node = graph.create_op_node(
op_type='fake_dequantize_max_abs',
attrs={
'max_range': float(max_range),
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node,
'Scale': scale_var_node},
outputs={'Out': dequant_var_node})
graph.link_to(var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
return dequant_var_node
def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
quant_bits):
"""
Insert fake_channel_wise_dequantize_max_abs in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
dequant_op_node = graph.create_op_node(
op_type='fake_channel_wise_dequantize_max_abs',
attrs={
'quant_bits': quant_bits,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': var_node,
'Scales': scale_var_nodes},
outputs={'Out': dequant_var_node})
graph.link_to(var_node, dequant_op_node)
for scale_n in scale_var_nodes:
graph.link_to(scale_n, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
return dequant_var_node
def _quantized_var_name(self, var_name):
"""
Return quantized variable name for the input `var_name`.
"""
return "%s.quantized" % (var_name)
def _dequantized_var_name(self, var_name):
"""
Return dequantized variable name for the input `var_name`.
"""
return "%s.dequantized" % (var_name)
def _quantized_scale_name(self, var_name):
"""
Return the scale name of quantized variable for the input `var_name`.
"""
return "%s.scale" % (var_name)
class QuantizationFreezePass(object):
"""
The freeze pass is used to adjust the quantize operator order, for example:
1) `activation -> quant -> dequant -> conv2d` will be freezed into
`activation -> quant -> conv2d -> dequant`
2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
and weight will be sacled offline.
Args:
scope(fluid.Scope): scope is used to get the weight tensor values.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
weight_bits (int): quantization bit number for weights.
activation_bits (int): quantization bit number for activation.
weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'.
The 'range_abs_max' usually is not used for weight, since weights are fixed once the
model is well trained.
"""
def __init__(self,
scope,
place,
weight_bits=8,
activation_bits=8,
weight_quantize_type='abs_max'):
assert scope is not None, \
'The scope cannot be set None.'
assert place is not None, \
'The place cannot be set None.'
self._scope = scope
self._place = place
self._weight_bits = weight_bits
self._activation_bits = activation_bits
self._weight_quantize_type = weight_quantize_type
self._quantizable_ops = _quantizable_op_list
self._conv_ops = ['conv2d', 'depthwise_conv2d']
self._fake_quant_op_names = _fake_quant_op_list
self._fake_dequant_op_names = _fake_dequant_op_list
self._op_input_rename_map = collections.OrderedDict()
self._op_output_rename_map = collections.OrderedDict()
self._var_scale_map = collections.OrderedDict()
def apply(self, graph):
"""
Adjust quantize/dequantize operators order for the inference process.
Args:
graph(IrGraph): the applied graph.
"""
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
ops = graph.all_op_nodes()
for op_node in ops:
op_name = op_node.name()
if op_name in self._fake_quant_op_names:
input_arg_name = op_node.input('X')[0]
if input_arg_name in persistable_vars:
if self._weight_quantize_type == 'abs_max':
param = self._load_var(input_arg_name)
scale_v = np.max(np.abs(param))
elif self._weight_quantize_type == 'channel_wise_abs_max':
param = self._load_var(input_arg_name)
if len(param.shape) == 4: # conv2d or depthwise_conv2d
scale_v = []
for i in range(param.shape[0]):
scale_v.append(np.max(np.abs(param[i])))
else:
scale_v = np.max(np.abs(param))
else:
scale_v = self._load_var(
op_node.output('OutScale')[0])[0]
self._var_scale_map[input_arg_name] = scale_v
self._remove_fake_quant_and_dequant_op(graph, op_node)
# quantize weight and restore
param_v = self._load_var(input_arg_name)
quantized_param_v = self._quant(param_v, scale_v,
self._weight_bits)
self._restore_var(input_arg_name, quantized_param_v)
else:
scale_v = graph._find_node_by_name(
op_node.outputs, op_node.output('OutScale')[0])
self._var_scale_map[input_arg_name] = scale_v
ops = graph.all_op_nodes()
for op_node in ops:
op_name = op_node.name()
if op_name in self._fake_dequant_op_names:
self._remove_fake_quant_and_dequant_op(graph, op_node)
ops = graph.all_op_nodes()
for op_node in ops:
op_name = op_node.name()
if op_name in self._quantizable_ops:
skipped = op_node.op().has_attr("skip_quant") and \
op_node.op().attr("skip_quant")
if skipped:
continue
if self._weight_quantize_type == 'channel_wise_abs_max' and op_name in self._conv_ops:
self._insert_post_channel_dequant_op(graph, op_node)
else:
self._insert_post_dequant_op(graph, op_node)
for op_node in ops:
# insert dequant_op after fc/conv, need to rename inputs of the followed ops
for var_node in op_node.inputs:
if var_node.node in self._op_output_rename_map:
old_in = var_node
new_in = self._op_output_rename_map[var_node.node]
graph.update_input_link(old_in, new_in, op_node)
# remove the unused var node in the graph
self._remove_unused_var_nodes(graph)
graph.resolve_hazard()
return graph
def _remove_fake_quant_and_dequant_op(self, graph, op_node):
k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
if v.node not in self._op_input_rename_map:
self._op_input_rename_map[k.node] = v
else:
self._op_input_rename_map[k.node] = self._op_input_rename_map[
v.node]
graph.safe_remove_nodes(op_node)
def _insert_post_channel_dequant_op(self, graph, op_node):
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
for var_node in op_node.inputs:
name = var_node.name()
if name not in op_node.input_arg_names():
continue
if var_node.node in self._op_input_rename_map:
old_in = var_node
new_in = self._op_input_rename_map[var_node.node]
new_in.clear_outputs()
graph.update_input_link(old_in, new_in, op_node)
original_var_name = self._original_var_name(name)
scale_v = self._var_scale_map[original_var_name]
if original_var_name in persistable_vars:
assert isinstance(
scale_v,
list), 'The scale of parameter %s is not a list.' % (
original_var_name)
channel_scale = np.array(scale_v)
else:
assert isinstance(scale_v, IrNode)
scale_var_node = self._var_scale_map[original_var_name]
if len(op_node.output_arg_names()) != 1:
raise ValueError("Only support one output, but op %s has"
" more than one output." % (op_node.name()))
output_var_node = graph._find_node_by_name(
op_node.outputs, op_node.output_arg_names()[0])
weight_scale_node = graph.create_persistable_node(
name=unique_name.generate('channel_scale'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[channel_scale.shape[0]],
var_dtype=output_var_node.dtype())
data_type = 'float64' if output_var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(weight_scale_node,
channel_scale.astype(data_type), self._scope,
self._place)
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(output_var_node.name()),
var_type=output_var_node.type(),
shape=output_var_node.shape(),
var_dtype=output_var_node.dtype())
dequant_op_node = graph.create_op_node(
op_type='fake_channel_wise_dequantize_max_abs',
attrs={
'quant_bits': [self._weight_bits, self._activation_bits],
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={
'X': output_var_node,
'Scales': [weight_scale_node, scale_var_node]
},
outputs={'Out': dequant_var_node})
graph.link_to(output_var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
graph.link_to(weight_scale_node, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
self._op_output_rename_map[output_var_node.node] = dequant_var_node
return dequant_var_node
def _insert_post_dequant_op(self, graph, op_node):
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
if len(op_node.input_arg_names()) >= 2 and len(persistable_vars) == 0:
raise ValueError("The op %s has more than one inputs "
"and all of them are not persistable. "
"Now, it is not supported!" % (op_node.name()))
max_range = 1
param_range = (1 << (self._weight_bits - 1)) - 1
act_range = (1 << (self._activation_bits - 1)) - 1
for var_node in op_node.inputs:
name = var_node.name()
if name not in op_node.input_arg_names():
continue
if var_node.node in self._op_input_rename_map:
old_in = var_node
new_in = self._op_input_rename_map[var_node.node]
new_in.clear_outputs()
graph.update_input_link(old_in, new_in, op_node)
original_var_name = self._original_var_name(name)
scale_v = self._var_scale_map[original_var_name]
if original_var_name in persistable_vars:
assert self._is_float(
scale_v), 'The scale of parameter %s is not a float.' % (
original_var_name)
max_range *= param_range / scale_v
else:
max_range *= act_range
assert isinstance(scale_v, IrNode)
scale_var_node = self._var_scale_map[original_var_name]
if len(op_node.output_arg_names()) != 1:
raise ValueError("Only support one output, but op %s has"
" more than one output." % (op_node.name()))
output_var_node = graph._find_node_by_name(
op_node.outputs, op_node.output_arg_names()[0])
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(output_var_node.name()),
var_type=output_var_node.type(),
shape=output_var_node.shape(),
var_dtype=output_var_node.dtype())
dequant_op_node = graph.create_op_node(
op_type='fake_dequantize_max_abs',
attrs={
'max_range': float(max_range),
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
},
inputs={'X': output_var_node,
'Scale': scale_var_node},
outputs={'Out': dequant_var_node})
graph.link_to(output_var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
self._op_output_rename_map[output_var_node.node] = dequant_var_node
return dequant_var_node
def _load_var(self, name):
return np.array(self._scope.find_var(name).get_tensor())
def _restore_var(self, name, array):
tensor = self._scope.find_var(name).get_tensor()
tensor.set(array, self._place)
def _remove_unused_var_nodes(self, graph):
all_used_vars = set()
ops = graph.all_op_nodes()
for op_node in ops:
for input_node in op_node.inputs:
all_used_vars.add(input_node)
for output_node in op_node.outputs:
all_used_vars.add(output_node)
all_used_vars = {n.node for n in all_used_vars}
all_unused_vars = {
n
for n in filter(lambda node: node.node not in all_used_vars,
graph.all_var_nodes())
}
graph.safe_remove_nodes(all_unused_vars)
def _original_var_name(self, var_name):
"""
Return the original variable name.
"""
if var_name.endswith('.quantized.dequantized'):
return var_name[:-len('.quantized.dequantized')]
if var_name.endswith('.quantized'):
return var_name[:-len('.quantized')]
if var_name.endswith('.dequantized'):
return var_name[:-len('.dequantized')]
if var_name.endswith('.scale'):
return var_name[:-len('.scale')]
else:
return var_name
def _dequantized_var_name(self, var_name):
"""
Return dequantized variable name for the input `var_name`.
"""
return "%s.dequantized" % (var_name)
def _is_float(self, v):
return isinstance(v, float) or isinstance(v, np.float32) \
or isinstance(v, np.float64)
def _quant(self, x, scale, num_bits):
if isinstance(scale, list):
for i, s in enumerate(scale):
x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
return x
else:
return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
class ConvertToInt8Pass(object):
"""
Convert the weights into int8_t type.
Args:
scope(fluid.Scope): scope is used to get the weight tensor values.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
8bits weight tensors.
"""
def __init__(self, scope, place):
assert scope is not None, \
'The scope cannot be set None.'
assert place is not None, \
'The place cannot be set None.'
self._scope = scope
self._place = place
self._quantizable_ops = _quantizable_op_list
def apply(self, graph):
"""
Convert weights' tpye of the graph. After that, the data type of the
graph weigths is int8_t.
Args:
graph(IrGraph): the applied graph.
"""
persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
ops = graph.all_op_nodes()
input_map = {}
for op_node in ops:
op_name = op_node.name()
if op_name in self._quantizable_ops:
skipped = op_node.op().has_attr("skip_quant") and \
op_node.op().attr("skip_quant")
if skipped:
continue
for var_node in op_node.inputs:
name = var_node.name()
if name in persistable_vars:
if name not in input_map:
int8_var_node = self._convert_to_int8(graph,
var_node)
input_map[name] = int8_var_node
graph.update_input_link(var_node, input_map[name],
op_node)
# remove the unused var node in the graph
self._remove_unused_var_nodes(graph)
graph.resolve_hazard()
return graph
def _convert_to_int8(self, graph, var_node):
int8_var_node_name = var_node.name() + ".int8"
int8_var_node = graph.create_persistable_node(
name=cpt.to_text(int8_var_node_name),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=core.VarDesc.VarType.INT8)
array = self._load_var(var_node.name())
self._scope.var(int8_var_node_name)
self._store_var(int8_var_node_name, array, np.int8)
return int8_var_node
def _load_var(self, name):
return np.array(self._scope.find_var(name).get_tensor())
def _store_var(self, name, array, dtype):
tensor = self._scope.find_var(name).get_tensor()
tensor.set(array.astype(dtype), self._place)
def _remove_unused_var_nodes(self, graph):
all_used_vars = set()
ops = graph.all_op_nodes()
for op_node in ops:
for input_node in op_node.inputs:
all_used_vars.add(input_node)
for output_node in op_node.outputs:
all_used_vars.add(output_node)
all_used_vars = {n.node for n in all_used_vars}
all_unused_vars = {
n
for n in filter(lambda node: node.node not in all_used_vars,
graph.all_var_nodes())
}
graph.safe_remove_nodes(all_unused_vars)
class TransformForMobilePass(object):
"""
This pass is used to convert the freezed graph for paddle-mobile execution.
"""
def __init__(self):
self._fake_quant_op_names = _fake_quant_op_list
self._fake_dequant_op_names = _fake_dequant_op_list
def apply(self, graph):
"""
Because paddle-mobile use `quantize` an `dequantize` as the names of
quantize operator and dequantize operator, the `apply` function just
realize this logic.
Args:
graph(IrGraph): the graph will be transformed.
"""
ops = graph.all_op_nodes()
for op_node in ops:
name = op_node.name()
if name in self._fake_quant_op_names:
op_node.set_type('quantize')
quant_node = graph.create_op_node_from_desc(op_node.op())
for input_node in op_node.inputs:
graph.link_to(input_node, quant_node)
for output_node in op_node.outputs:
graph.link_to(quant_node, output_node)
graph.safe_remove_nodes(op_node)
if name in self._fake_dequant_op_names:
op_node.set_type('dequantize')
dequant_node = graph.create_op_node_from_desc(op_node.op())
for input_node in op_node.inputs:
graph.link_to(input_node, dequant_node)
for output_node in op_node.outputs:
graph.link_to(dequant_node, output_node)
graph.safe_remove_nodes(op_node)
graph.resolve_hazard()
return graph
class ScaleForTrainingPass(object):
def __init__(self, scope=None, place=None, moving_rate=0.9):
"""
This pass is used for calculating output scales of some operators.
These output scales may be used by tensorRT or some other inference engines.
Args:
scope(fluid.Scope): The scope is used to initialize these new parameters.
place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
"""
self._scope = scope
self._place = place
self._moving_rate = moving_rate
self._is_test = None
self._teller_set = _out_scale_op_list
def apply(self, graph):
"""
Insert the `moving_average_abs_max_scale` op in order to calculate output scales
of operators in the teller_set.
Args:
graph(IrGraph): the target graph.
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
self._is_test = graph.is_test()
ops = graph.all_op_nodes()
for op_node in ops:
name = op_node.name()
if name in self._teller_set:
if len(op_node.output_arg_names()) != 1:
continue
in_node = graph._find_node_by_name(
op_node.outputs, op_node.output_arg_names()[0])
out_node = graph.create_var_node_from_desc(in_node.var())
scale_node = graph.create_persistable_node(
name=self._scale_name(in_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=in_node.dtype())
ins = {'X': in_node}
outs = {'Out': out_node, 'OutScale': scale_node}
if not self._is_test:
state_in_node = graph.create_persistable_node(
name=unique_name.generate('scale_state@'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=in_node.dtype(),
shape=[1])
data_type = 'float64' if in_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('scale_accum@'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=in_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
state_out_node = graph.create_var_node_from_desc(
state_in_node.var())
accum_out_node = graph.create_var_node_from_desc(
accum_in_node.var())
ins['InState'] = state_in_node
ins['InAccum'] = accum_in_node
outs['OutState'] = state_out_node
outs['OutAccum'] = accum_out_node
attrs = {
'moving_rate': self._moving_rate,
'is_test': self._is_test,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
}
scale_op_node = graph.create_op_node(
op_type='moving_average_abs_max_scale',
attrs=attrs,
inputs=ins,
outputs=outs)
graph.link_to(in_node, scale_op_node)
graph.link_to(scale_op_node, out_node)
graph.link_to(scale_op_node, scale_node)
if not self._is_test:
graph.link_to(state_in_node, scale_op_node)
graph.link_to(accum_in_node, scale_op_node)
graph.link_to(scale_op_node, state_out_node)
graph.link_to(scale_op_node, accum_out_node)
graph.resolve_hazard()
return graph
def _scale_name(self, var_name):
"""
Return the scale name for the var named `var_name`.
"""
return "%s@scale" % (var_name)
class ScaleForInferencePass(object):
def __init__(self, scope=None):
"""
This pass is used for setting output scales of some operators.
These output scales may be used by tensorRT or some other inference engines.
Args:
scope(fluid.Scope): The scope is used to initialize these new parameters.
"""
self._scope = scope
self._teller_set = _out_scale_op_list
def apply(self, graph):
"""
Get output scales from the scope and set these scales in op_descs
of operators in the teller_set.
Args:
graph(IrGraph): the target graph.
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
ops = graph.all_op_nodes()
for op_node in ops:
name = op_node.name()
if name in self._teller_set:
if len(op_node.output_arg_names()) != 1:
continue
scale_name = self._scale_name(op_node.output_arg_names()[0])
scale_v = np.array(
self._scope.find_var(scale_name).get_tensor())[0]
op_node.op()._set_attr("out_scale", float(scale_v))
graph.resolve_hazard()
return graph
def _scale_name(self, var_name):
"""
Return the scale name for the var named `var_name`.
"""
return "%s@scale" % (var_name)
class AddQuantDequantPass(object):
def __init__(self, scope=None, place=None, moving_rate=0.9, quant_bits=8):
"""
This pass is used to add quant_dequant op for some ops, such as the
'elementwise_add' and 'average pool2d' op.
"""
self._scope = scope
self._place = place
self._moving_rate = moving_rate
self._quant_bits = quant_bits
self._is_test = None
self._target_ops = ["elementwise_add", "pool2d"]
self._target_grad_ops = ['%s_grad' % (op) for op in self._target_ops]
def apply(self, graph):
"""
Add quant_dequant before some ops, such as the 'elementwise_add'
and 'average pool2d' op.
Args:
graph(IrGraph): the target graph.
"""
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
self._is_test = graph.is_test()
dequantized_vars_map = collections.OrderedDict()
ops = graph.all_op_nodes()
for op_node in ops:
if op_node.name() in self._target_ops:
in_nodes_all_not_persistable = True
for input_name in op_node.input_arg_names():
in_node = graph._find_node_by_name(op_node.inputs,
input_name)
in_nodes_all_not_persistable = (
in_nodes_all_not_persistable and
not in_node.persistable())
if not in_nodes_all_not_persistable:
continue
if op_node.op().has_attr("pooling_type") and \
op_node.op().attr("pooling_type") == 'max':
continue
input_names = op_node.input_arg_names()
for input_name in input_names:
in_node = graph._find_node_by_name(op_node.inputs,
input_name)
quant_var_node, scale_var_node = \
self._inser_quant_dequant_moving_average_abs_max_op(
graph, in_node, self._quant_bits)
dequantized_vars_map[input_name] = quant_var_node
graph.update_input_link(in_node, quant_var_node, op_node)
for op_node in ops:
if op_node.name() in self._target_grad_ops:
for input_name in op_node.input_arg_names():
if input_name in dequantized_vars_map:
in_node = graph._find_node_by_name(op_node.inputs,
input_name)
dequant_var_node = dequantized_vars_map[input_name]
graph.update_input_link(in_node, dequant_var_node,
op_node)
graph.resolve_hazard()
return graph
def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
quant_bits):
"""Insert fake_quantize_dequantize_moving_average_abs_max op.
"""
quant_var_node = graph.create_var_node(
name="{}.quant_dequant".format(var_node.name()),
var_type=var_node.type(),
shape=var_node.shape(),
var_dtype=var_node.dtype())
scale_in_node = graph.create_persistable_node(
name="{}.quant_dequant.scale".format(var_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=var_node.dtype())
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
scale_in_node,
np.array(
[0.001], dtype=data_type),
self._scope,
self._place)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
ins = {'X': var_node, 'InScale': scale_in_node}
outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
if not self._is_test:
state_in_node = graph.create_persistable_node(
name=unique_name.generate('quant_dequant.state'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
data_type = 'float64' if var_node.dtype(
) == core.VarDesc.VarType.FP64 else 'float32'
_init_var_node(
state_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
accum_in_node = graph.create_persistable_node(
name=unique_name.generate('quant_dequant.accum'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
var_dtype=var_node.dtype(),
shape=[1])
_init_var_node(
accum_in_node,
np.ones(
[1], dtype=data_type),
self._scope,
self._place)
state_out_node = graph.create_var_node_from_desc(state_in_node.var(
))
accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
))
ins['InState'] = state_in_node
ins['InAccum'] = accum_in_node
outs['OutState'] = state_out_node
outs['OutAccum'] = accum_out_node
attrs = {
'bit_length': quant_bits,
'moving_rate': self._moving_rate,
'is_test': self._is_test,
'op_role': core.op_proto_and_checker_maker.OpRole.Forward
}
quant_op_node = graph.create_op_node(
op_type='fake_quantize_dequantize_moving_average_abs_max',
attrs=attrs,
inputs=ins,
outputs=outs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_in_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_out_node)
if not self._is_test:
graph.link_to(state_in_node, quant_op_node)
graph.link_to(accum_in_node, quant_op_node)
graph.link_to(quant_op_node, state_out_node)
graph.link_to(quant_op_node, accum_out_node)
return quant_var_node, scale_out_node