You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
16 KiB
379 lines
16 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/conv_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using conv_bwd_data = mkldnn::convolution_backward_data;
|
|
using conv_bwd_weights = mkldnn::convolution_backward_weights;
|
|
using conv_fwd = mkldnn::convolution_forward;
|
|
using framework::DataLayout;
|
|
using mkldnn::memory;
|
|
using mkldnn::primitive;
|
|
using mkldnn::reorder;
|
|
using mkldnn::stream;
|
|
using platform::to_void_cast;
|
|
using platform::GetMKLDNNFormat;
|
|
|
|
template <typename T>
|
|
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
// Get unique name for index
|
|
const std::string key = ctx.op().Output("Output");
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* filter = ctx.Input<Tensor>("Filter");
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
|
|
input->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for Input tensor");
|
|
PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
|
|
filter->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for Filter tensor");
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
|
|
int groups = ctx.Attr<int>("groups");
|
|
|
|
// TODO(pzelazko-intel) add support for group convolution and dilation
|
|
PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
|
|
PADDLE_ENFORCE(
|
|
dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
|
|
"dilation in convolution is not implemented yet");
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
|
|
PADDLE_ENFORCE(input->dims().size() == 4,
|
|
"Input must be with 4 dimensions, i.e. NCHW");
|
|
PADDLE_ENFORCE(filter->dims().size() == 4,
|
|
"Filter must be with 4 dimensions, i.e. OIHW");
|
|
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
std::vector<int> weights_tz =
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
// create mkldnn memory from input tensors (data/weights)
|
|
auto user_src_memory = memory(
|
|
{{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
|
|
to_void_cast(input_data));
|
|
auto user_weights_memory =
|
|
memory({{{weights_tz}, memory::data_type::f32, filter->format()},
|
|
mkldnn_engine},
|
|
to_void_cast(filter_data));
|
|
|
|
/* create memory descriptor for convolution without specified format
|
|
* ('any') which lets a primitive (convolution in this case) choose
|
|
* the memory format preferred for best performance
|
|
*/
|
|
auto src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
|
|
memory::format::any);
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, memory::data_type::f32, memory::format::any);
|
|
auto dst_md = platform::MKLDNNMemDesc(dst_tz, memory::data_type::f32,
|
|
memory::format::any);
|
|
|
|
// create a conv primitive descriptor and save it for usage in backward
|
|
std::shared_ptr<conv_fwd::primitive_desc> conv_pd = ConvFwdPrimitiveDesc(
|
|
src_md, weights_md, dst_md, strides, paddings, mkldnn_engine);
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
auto src_memory = user_src_memory;
|
|
primitive reorder_src;
|
|
bool is_src_reordered = false;
|
|
if (memory::primitive_desc(conv_pd->src_primitive_desc()) !=
|
|
user_src_memory.get_primitive_desc()) {
|
|
src_memory = memory(conv_pd->src_primitive_desc());
|
|
reorder_src = reorder(user_src_memory, src_memory);
|
|
is_src_reordered = true;
|
|
}
|
|
auto weights_memory = user_weights_memory;
|
|
primitive reorder_weights;
|
|
bool is_weights_reordered = false;
|
|
if (memory::primitive_desc(conv_pd->weights_primitive_desc()) !=
|
|
user_weights_memory.get_primitive_desc()) {
|
|
weights_memory = memory(conv_pd->weights_primitive_desc());
|
|
reorder_weights = reorder(user_weights_memory, weights_memory);
|
|
is_weights_reordered = true;
|
|
}
|
|
|
|
// create memory primitive for conv dst
|
|
auto dst_memory = memory(conv_pd->dst_primitive_desc(), output_data);
|
|
|
|
// create convolution op primitive
|
|
auto conv_prim = conv_fwd(*conv_pd, src_memory, weights_memory, dst_memory);
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
std::vector<primitive> pipeline;
|
|
if (is_src_reordered) pipeline.push_back(reorder_src);
|
|
if (is_weights_reordered) pipeline.push_back(reorder_weights);
|
|
pipeline.push_back(conv_prim);
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
// Save conv_pd/src_memory/weights_memory for backward pass
|
|
dev_ctx.SetBlob(key_conv_pd, conv_pd);
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(GetMKLDNNFormat(dst_memory));
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<conv_fwd::primitive_desc> ConvFwdPrimitiveDesc(
|
|
const memory::desc& src, const memory::desc& weights,
|
|
const memory::desc& dst, const std::vector<int>& strides,
|
|
const std::vector<int>& paddings, const mkldnn::engine& engine) const {
|
|
memory::dims stride_dims = {strides[0], strides[1]};
|
|
memory::dims padding_dims = {paddings[0], paddings[1]};
|
|
|
|
auto conv_desc =
|
|
conv_fwd::desc(mkldnn::prop_kind::forward, mkldnn::convolution_direct,
|
|
src, weights, dst, stride_dims, padding_dims,
|
|
padding_dims, mkldnn::padding_kind::zero);
|
|
|
|
auto p_conv_pd = new conv_fwd::primitive_desc(conv_desc, engine);
|
|
|
|
return std::unique_ptr<conv_fwd::primitive_desc>(p_conv_pd);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
const Tensor* input = ctx.Input<Tensor>("Input");
|
|
const Tensor* filter = ctx.Input<Tensor>("Filter");
|
|
const Tensor* output = ctx.Input<Tensor>("Output");
|
|
const Tensor* output_grad =
|
|
ctx.Input<Tensor>(framework::GradVarName("Output"));
|
|
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
|
|
Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
|
|
|
|
PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
|
|
input->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for Input tensor");
|
|
PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
|
|
filter->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for Filter tensor");
|
|
PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
|
|
output->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for Output tensor");
|
|
PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
|
|
output_grad->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for output_grad tensor");
|
|
|
|
if (!input_grad && !filter_grad) return;
|
|
|
|
// Get an unique name from "argument" name of "Output" variable
|
|
// This name will be used as key when saving info into device context
|
|
const std::string key = ctx.op().Input("Output");
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
T* input_grad_data = nullptr;
|
|
T* filter_grad_data = nullptr;
|
|
|
|
if (input_grad) {
|
|
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
if (filter_grad) {
|
|
filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
std::vector<int> weights_tz =
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
// create mkldnn memory from input tensors (input/weights/output_grad)
|
|
auto user_src_memory = memory(
|
|
{{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
|
|
to_void_cast(input_data));
|
|
auto user_weights_memory =
|
|
memory({{{weights_tz}, memory::data_type::f32, filter->format()},
|
|
mkldnn_engine},
|
|
to_void_cast(filter_data));
|
|
auto user_diff_dst_memory =
|
|
memory({{{dst_tz}, memory::data_type::f32, output_grad->format()},
|
|
mkldnn_engine},
|
|
to_void_cast(output_grad_data));
|
|
|
|
/* create memory descriptor for conv backward without specified format
|
|
* ('any') which lets a primitive (conv backward in this case) choose
|
|
* the memory format preferred for best performance
|
|
*/
|
|
auto src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
|
|
memory::format::any);
|
|
auto diff_src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
|
|
memory::format::any);
|
|
auto weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, memory::data_type::f32, memory::format::any);
|
|
auto diff_weights_md = platform::MKLDNNMemDesc(
|
|
weights_tz, memory::data_type::f32, memory::format::any);
|
|
auto diff_dst_md = platform::MKLDNNMemDesc(dst_tz, memory::data_type::f32,
|
|
memory::format::any);
|
|
|
|
// Retrieve conv_pd from device context
|
|
auto conv_pd = std::static_pointer_cast<conv_fwd::primitive_desc>(
|
|
dev_ctx.GetBlob(key_conv_pd));
|
|
PADDLE_ENFORCE(conv_pd != nullptr,
|
|
"Fail to find conv_pd in device context");
|
|
|
|
// create backward conv primitive for weights
|
|
if (filter_grad) {
|
|
// create backward convolution primitive descriptor
|
|
auto conv_bwd_weights_desc = conv_bwd_weights::desc(
|
|
mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
|
|
strides, paddings, paddings, mkldnn::padding_kind::zero);
|
|
auto conv_bwd_weights_pd = conv_bwd_weights::primitive_desc(
|
|
conv_bwd_weights_desc, mkldnn_engine, *conv_pd);
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
auto src_memory = user_src_memory;
|
|
primitive reorder_src;
|
|
bool is_src_reordered = false;
|
|
if (memory::primitive_desc(conv_bwd_weights_pd.src_primitive_desc()) !=
|
|
user_src_memory.get_primitive_desc()) {
|
|
src_memory = memory(conv_bwd_weights_pd.src_primitive_desc());
|
|
reorder_src = reorder(user_src_memory, src_memory);
|
|
is_src_reordered = true;
|
|
}
|
|
|
|
auto diff_dst_memory_4filter = user_diff_dst_memory;
|
|
primitive reorder_diff_dst_4filter;
|
|
bool is_diff_dst_reordered_4filter = false;
|
|
if (memory::primitive_desc(
|
|
conv_bwd_weights_pd.diff_dst_primitive_desc()) !=
|
|
user_diff_dst_memory.get_primitive_desc()) {
|
|
diff_dst_memory_4filter =
|
|
memory(conv_bwd_weights_pd.diff_dst_primitive_desc());
|
|
reorder_diff_dst_4filter =
|
|
reorder(user_diff_dst_memory, diff_dst_memory_4filter);
|
|
is_diff_dst_reordered_4filter = true;
|
|
}
|
|
|
|
// create mkldnn memory for output (i.e. diff weights)
|
|
auto diff_weights_memory =
|
|
memory(conv_bwd_weights_pd.diff_weights_primitive_desc(),
|
|
reinterpret_cast<void*>(filter_grad_data));
|
|
|
|
// create backward conv primitive for weights
|
|
auto conv_bwd_weights_prim =
|
|
conv_bwd_weights(conv_bwd_weights_pd, src_memory,
|
|
diff_dst_memory_4filter, diff_weights_memory);
|
|
|
|
// push primitive and execute it
|
|
std::vector<primitive> pipeline;
|
|
if (is_src_reordered) pipeline.push_back(reorder_src);
|
|
if (is_diff_dst_reordered_4filter)
|
|
pipeline.push_back(reorder_diff_dst_4filter);
|
|
pipeline.push_back(conv_bwd_weights_prim);
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
filter_grad->set_layout(DataLayout::kMKLDNN);
|
|
filter_grad->set_format(GetMKLDNNFormat(diff_weights_memory));
|
|
}
|
|
|
|
if (input_grad) {
|
|
// create backward convolution primitive descriptor
|
|
auto conv_bwd_data_desc = conv_bwd_data::desc(
|
|
mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
|
|
strides, paddings, paddings, mkldnn::padding_kind::zero);
|
|
auto conv_bwd_data_pd = conv_bwd_data::primitive_desc(
|
|
conv_bwd_data_desc, mkldnn_engine, *conv_pd);
|
|
|
|
// create reorder primitive if the input format is not the preferred one
|
|
auto weights_memory = user_weights_memory;
|
|
primitive reorder_weights;
|
|
bool is_weights_reordered = false;
|
|
if (memory::primitive_desc(conv_bwd_data_pd.weights_primitive_desc()) !=
|
|
user_weights_memory.get_primitive_desc()) {
|
|
weights_memory = memory(conv_bwd_data_pd.weights_primitive_desc());
|
|
reorder_weights = reorder(user_weights_memory, weights_memory);
|
|
is_weights_reordered = true;
|
|
}
|
|
|
|
auto diff_dst_memory_4data = user_diff_dst_memory;
|
|
primitive reorder_diff_dst_4data;
|
|
bool is_diff_dst_reordered_4data = false;
|
|
if (memory::primitive_desc(conv_bwd_data_pd.diff_dst_primitive_desc()) !=
|
|
user_diff_dst_memory.get_primitive_desc()) {
|
|
diff_dst_memory_4data =
|
|
memory(conv_bwd_data_pd.diff_dst_primitive_desc());
|
|
reorder_diff_dst_4data =
|
|
reorder(user_diff_dst_memory, diff_dst_memory_4data);
|
|
is_diff_dst_reordered_4data = true;
|
|
}
|
|
|
|
// create mkldnn memory for output (i.e. diff src)
|
|
auto diff_src_memory = memory(conv_bwd_data_pd.diff_src_primitive_desc(),
|
|
reinterpret_cast<void*>(input_grad_data));
|
|
|
|
// create backward conv primitive for data
|
|
auto conv_bwd_data_prim =
|
|
conv_bwd_data(conv_bwd_data_pd, diff_dst_memory_4data, weights_memory,
|
|
diff_src_memory);
|
|
|
|
// push primitive and execute it
|
|
std::vector<primitive> pipeline;
|
|
if (is_weights_reordered) pipeline.push_back(reorder_weights);
|
|
if (is_diff_dst_reordered_4data)
|
|
pipeline.push_back(reorder_diff_dst_4data);
|
|
pipeline.push_back(conv_bwd_data_prim);
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
input_grad->set_layout(DataLayout::kMKLDNN);
|
|
input_grad->set_format(GetMKLDNNFormat(diff_src_memory));
|
|
}
|
|
} // Compute()
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ConvMKLDNNOpKernel<float>);
|
|
|
|
REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ConvMKLDNNGradOpKernel<float>);
|