You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							2335 lines
						
					
					
						
							38 KiB
						
					
					
				
			
		
		
	
	
							2335 lines
						
					
					
						
							38 KiB
						
					
					
				name: "googlenet"
 | 
						|
input: "data"
 | 
						|
input_dim: 128
 | 
						|
input_dim: 3
 | 
						|
input_dim: 224
 | 
						|
input_dim: 224
 | 
						|
input: "label"
 | 
						|
input_dim: 128
 | 
						|
input_dim: 1
 | 
						|
input_dim: 1
 | 
						|
input_dim: 1 
 | 
						|
layer {
 | 
						|
  name: "conv1/7x7_s2"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "data"
 | 
						|
  top: "conv1/7x7_s2"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    pad: 3
 | 
						|
    kernel_size: 7
 | 
						|
    stride: 2
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv1/relu_7x7"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv1/7x7_s2"
 | 
						|
  top: "conv1/7x7_s2"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "pool1/3x3_s2"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "conv1/7x7_s2"
 | 
						|
  top: "pool1/3x3_s2"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
#layer {
 | 
						|
#  name: "pool1/norm1"
 | 
						|
#  type: "LRN"
 | 
						|
#  bottom: "pool1/3x3_s2"
 | 
						|
#  top: "pool1/norm1"
 | 
						|
#  lrn_param {
 | 
						|
#    local_size: 5
 | 
						|
#    alpha: 0.0001
 | 
						|
#    beta: 0.75
 | 
						|
#  }
 | 
						|
#}
 | 
						|
layer {
 | 
						|
  name: "conv2/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
#  bottom: "pool1/norm1"
 | 
						|
  bottom: "pool1/3x3_s2"
 | 
						|
  top: "conv2/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv2/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv2/3x3_reduce"
 | 
						|
  top: "conv2/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv2/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "conv2/3x3_reduce"
 | 
						|
  top: "conv2/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 192
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "conv2/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "conv2/3x3"
 | 
						|
  top: "conv2/3x3"
 | 
						|
}
 | 
						|
#layer {
 | 
						|
#  name: "conv2/norm2"
 | 
						|
#  type: "LRN"
 | 
						|
#  bottom: "conv2/3x3"
 | 
						|
#  top: "conv2/norm2"
 | 
						|
#  lrn_param {
 | 
						|
#    local_size: 5
 | 
						|
#    alpha: 0.0001
 | 
						|
#    beta: 0.75
 | 
						|
#  }
 | 
						|
#}
 | 
						|
layer {
 | 
						|
  name: "pool2/3x3_s2"
 | 
						|
  type: "Pooling"
 | 
						|
#  bottom: "conv2/norm2"
 | 
						|
  bottom: "conv2/3x3"
 | 
						|
  top: "pool2/3x3_s2"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool2/3x3_s2"
 | 
						|
  top: "inception_3a/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3a/1x1"
 | 
						|
  top: "inception_3a/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool2/3x3_s2"
 | 
						|
  top: "inception_3a/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 96
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3a/3x3_reduce"
 | 
						|
  top: "inception_3a/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3a/3x3_reduce"
 | 
						|
  top: "inception_3a/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3a/3x3"
 | 
						|
  top: "inception_3a/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool2/3x3_s2"
 | 
						|
  top: "inception_3a/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 16
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3a/5x5_reduce"
 | 
						|
  top: "inception_3a/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3a/5x5_reduce"
 | 
						|
  top: "inception_3a/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3a/5x5"
 | 
						|
  top: "inception_3a/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "pool2/3x3_s2"
 | 
						|
  top: "inception_3a/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3a/pool"
 | 
						|
  top: "inception_3a/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3a/pool_proj"
 | 
						|
  top: "inception_3a/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3a/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_3a/1x1"
 | 
						|
  bottom: "inception_3a/3x3"
 | 
						|
  bottom: "inception_3a/5x5"
 | 
						|
  bottom: "inception_3a/pool_proj"
 | 
						|
  top: "inception_3a/output"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3a/output"
 | 
						|
  top: "inception_3b/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3b/1x1"
 | 
						|
  top: "inception_3b/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3a/output"
 | 
						|
  top: "inception_3b/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3b/3x3_reduce"
 | 
						|
  top: "inception_3b/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3b/3x3_reduce"
 | 
						|
  top: "inception_3b/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 192
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3b/3x3"
 | 
						|
  top: "inception_3b/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3a/output"
 | 
						|
  top: "inception_3b/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3b/5x5_reduce"
 | 
						|
  top: "inception_3b/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3b/5x5_reduce"
 | 
						|
  top: "inception_3b/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 96
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3b/5x5"
 | 
						|
  top: "inception_3b/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_3a/output"
 | 
						|
  top: "inception_3b/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_3b/pool"
 | 
						|
  top: "inception_3b/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_3b/pool_proj"
 | 
						|
  top: "inception_3b/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_3b/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_3b/1x1"
 | 
						|
  bottom: "inception_3b/3x3"
 | 
						|
  bottom: "inception_3b/5x5"
 | 
						|
  bottom: "inception_3b/pool_proj"
 | 
						|
  top: "inception_3b/output"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "pool3/3x3_s2"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_3b/output"
 | 
						|
  top: "pool3/3x3_s2"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool3/3x3_s2"
 | 
						|
  top: "inception_4a/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 192
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4a/1x1"
 | 
						|
  top: "inception_4a/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool3/3x3_s2"
 | 
						|
  top: "inception_4a/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 96
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4a/3x3_reduce"
 | 
						|
  top: "inception_4a/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4a/3x3_reduce"
 | 
						|
  top: "inception_4a/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 208
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4a/3x3"
 | 
						|
  top: "inception_4a/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool3/3x3_s2"
 | 
						|
  top: "inception_4a/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 16
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4a/5x5_reduce"
 | 
						|
  top: "inception_4a/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4a/5x5_reduce"
 | 
						|
  top: "inception_4a/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 48
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4a/5x5"
 | 
						|
  top: "inception_4a/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "pool3/3x3_s2"
 | 
						|
  top: "inception_4a/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4a/pool"
 | 
						|
  top: "inception_4a/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4a/pool_proj"
 | 
						|
  top: "inception_4a/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4a/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_4a/1x1"
 | 
						|
  bottom: "inception_4a/3x3"
 | 
						|
  bottom: "inception_4a/5x5"
 | 
						|
  bottom: "inception_4a/pool_proj"
 | 
						|
  top: "inception_4a/output"
 | 
						|
}
 | 
						|
#layer {
 | 
						|
#  name: "loss1/ave_pool"
 | 
						|
#  type: "Pooling"
 | 
						|
#  bottom: "inception_4a/output"
 | 
						|
#  top: "loss1/ave_pool"
 | 
						|
#  pooling_param {
 | 
						|
#    pool: AVE
 | 
						|
#    kernel_size: 5
 | 
						|
#    stride: 3
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss1/conv"
 | 
						|
#  type: "Convolution"
 | 
						|
#  bottom: "loss1/ave_pool"
 | 
						|
#  top: "loss1/conv"
 | 
						|
#  param {
 | 
						|
#    lr_mult: 1
 | 
						|
#    decay_mult: 1
 | 
						|
#  }
 | 
						|
#  param {
 | 
						|
#    lr_mult: 2
 | 
						|
#    decay_mult: 0
 | 
						|
#  }
 | 
						|
#  convolution_param {
 | 
						|
#    num_output: 128
 | 
						|
#    kernel_size: 1
 | 
						|
#    weight_filler {
 | 
						|
#      type: "xavier"
 | 
						|
#    }
 | 
						|
#    bias_filler {
 | 
						|
#      type: "constant"
 | 
						|
#      value: 0.2
 | 
						|
#    }
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss1/relu_conv"
 | 
						|
#  type: "ReLU"
 | 
						|
#  bottom: "loss1/conv"
 | 
						|
#  top: "loss1/conv"
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss1/fc"
 | 
						|
#  type: "InnerProduct"
 | 
						|
#  bottom: "loss1/conv"
 | 
						|
#  top: "loss1/fc"
 | 
						|
#  param {
 | 
						|
#    lr_mult: 1
 | 
						|
#    decay_mult: 1
 | 
						|
#  }
 | 
						|
#  param {
 | 
						|
#    lr_mult: 2
 | 
						|
#    decay_mult: 0
 | 
						|
#  }
 | 
						|
#  inner_product_param {
 | 
						|
#    num_output: 1024
 | 
						|
#    weight_filler {
 | 
						|
#      type: "xavier"
 | 
						|
#    }
 | 
						|
#    bias_filler {
 | 
						|
#      type: "constant"
 | 
						|
#      value: 0.2
 | 
						|
#    }
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss1/relu_fc"
 | 
						|
#  type: "ReLU"
 | 
						|
#  bottom: "loss1/fc"
 | 
						|
#  top: "loss1/fc"
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss1/drop_fc"
 | 
						|
#  type: "Dropout"
 | 
						|
#  bottom: "loss1/fc"
 | 
						|
#  top: "loss1/fc"
 | 
						|
#  dropout_param {
 | 
						|
#    dropout_ratio: 0.7
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss1/classifier"
 | 
						|
#  type: "InnerProduct"
 | 
						|
#  bottom: "loss1/fc"
 | 
						|
#  top: "loss1/classifier"
 | 
						|
#  param {
 | 
						|
#    lr_mult: 1
 | 
						|
#    decay_mult: 1
 | 
						|
#  }
 | 
						|
#  param {
 | 
						|
#    lr_mult: 2
 | 
						|
#    decay_mult: 0
 | 
						|
#  }
 | 
						|
#  inner_product_param {
 | 
						|
#    num_output: 1000
 | 
						|
#    weight_filler {
 | 
						|
#      type: "xavier"
 | 
						|
#    }
 | 
						|
#    bias_filler {
 | 
						|
#      type: "constant"
 | 
						|
#      value: 0
 | 
						|
#    }
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss1/loss"
 | 
						|
#  type: "SoftmaxWithLoss"
 | 
						|
#  bottom: "loss1/classifier"
 | 
						|
#  bottom: "label"
 | 
						|
#  top: "loss1/loss1"
 | 
						|
#  loss_weight: 0.3
 | 
						|
#}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4a/output"
 | 
						|
  top: "inception_4b/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 160
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4b/1x1"
 | 
						|
  top: "inception_4b/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4a/output"
 | 
						|
  top: "inception_4b/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 112
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4b/3x3_reduce"
 | 
						|
  top: "inception_4b/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4b/3x3_reduce"
 | 
						|
  top: "inception_4b/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 224
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4b/3x3"
 | 
						|
  top: "inception_4b/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4a/output"
 | 
						|
  top: "inception_4b/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 24
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4b/5x5_reduce"
 | 
						|
  top: "inception_4b/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4b/5x5_reduce"
 | 
						|
  top: "inception_4b/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4b/5x5"
 | 
						|
  top: "inception_4b/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_4a/output"
 | 
						|
  top: "inception_4b/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4b/pool"
 | 
						|
  top: "inception_4b/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4b/pool_proj"
 | 
						|
  top: "inception_4b/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4b/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_4b/1x1"
 | 
						|
  bottom: "inception_4b/3x3"
 | 
						|
  bottom: "inception_4b/5x5"
 | 
						|
  bottom: "inception_4b/pool_proj"
 | 
						|
  top: "inception_4b/output"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4b/output"
 | 
						|
  top: "inception_4c/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4c/1x1"
 | 
						|
  top: "inception_4c/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4b/output"
 | 
						|
  top: "inception_4c/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4c/3x3_reduce"
 | 
						|
  top: "inception_4c/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4c/3x3_reduce"
 | 
						|
  top: "inception_4c/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4c/3x3"
 | 
						|
  top: "inception_4c/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4b/output"
 | 
						|
  top: "inception_4c/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 24
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4c/5x5_reduce"
 | 
						|
  top: "inception_4c/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4c/5x5_reduce"
 | 
						|
  top: "inception_4c/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4c/5x5"
 | 
						|
  top: "inception_4c/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_4b/output"
 | 
						|
  top: "inception_4c/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4c/pool"
 | 
						|
  top: "inception_4c/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4c/pool_proj"
 | 
						|
  top: "inception_4c/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4c/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_4c/1x1"
 | 
						|
  bottom: "inception_4c/3x3"
 | 
						|
  bottom: "inception_4c/5x5"
 | 
						|
  bottom: "inception_4c/pool_proj"
 | 
						|
  top: "inception_4c/output"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4c/output"
 | 
						|
  top: "inception_4d/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 112
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4d/1x1"
 | 
						|
  top: "inception_4d/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4c/output"
 | 
						|
  top: "inception_4d/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 144
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4d/3x3_reduce"
 | 
						|
  top: "inception_4d/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4d/3x3_reduce"
 | 
						|
  top: "inception_4d/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 288
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4d/3x3"
 | 
						|
  top: "inception_4d/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4c/output"
 | 
						|
  top: "inception_4d/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4d/5x5_reduce"
 | 
						|
  top: "inception_4d/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4d/5x5_reduce"
 | 
						|
  top: "inception_4d/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4d/5x5"
 | 
						|
  top: "inception_4d/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_4c/output"
 | 
						|
  top: "inception_4d/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4d/pool"
 | 
						|
  top: "inception_4d/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 64
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4d/pool_proj"
 | 
						|
  top: "inception_4d/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4d/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_4d/1x1"
 | 
						|
  bottom: "inception_4d/3x3"
 | 
						|
  bottom: "inception_4d/5x5"
 | 
						|
  bottom: "inception_4d/pool_proj"
 | 
						|
  top: "inception_4d/output"
 | 
						|
}
 | 
						|
#layer {
 | 
						|
#  name: "loss2/ave_pool"
 | 
						|
#  type: "Pooling"
 | 
						|
#  bottom: "inception_4d/output"
 | 
						|
#  top: "loss2/ave_pool"
 | 
						|
#  pooling_param {
 | 
						|
#    pool: AVE
 | 
						|
#    kernel_size: 5
 | 
						|
#    stride: 3
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss2/conv"
 | 
						|
#  type: "Convolution"
 | 
						|
#  bottom: "loss2/ave_pool"
 | 
						|
#  top: "loss2/conv"
 | 
						|
#  param {
 | 
						|
#    lr_mult: 1
 | 
						|
#    decay_mult: 1
 | 
						|
#  }
 | 
						|
#  param {
 | 
						|
#    lr_mult: 2
 | 
						|
#    decay_mult: 0
 | 
						|
#  }
 | 
						|
#  convolution_param {
 | 
						|
#    num_output: 128
 | 
						|
#    kernel_size: 1
 | 
						|
#    weight_filler {
 | 
						|
#      type: "xavier"
 | 
						|
#    }
 | 
						|
#    bias_filler {
 | 
						|
#      type: "constant"
 | 
						|
#      value: 0.2
 | 
						|
#    }
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss2/relu_conv"
 | 
						|
#  type: "ReLU"
 | 
						|
#  bottom: "loss2/conv"
 | 
						|
#  top: "loss2/conv"
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss2/fc"
 | 
						|
#  type: "InnerProduct"
 | 
						|
#  bottom: "loss2/conv"
 | 
						|
#  top: "loss2/fc"
 | 
						|
#  param {
 | 
						|
#    lr_mult: 1
 | 
						|
#    decay_mult: 1
 | 
						|
#  }
 | 
						|
#  param {
 | 
						|
#    lr_mult: 2
 | 
						|
#    decay_mult: 0
 | 
						|
#  }
 | 
						|
#  inner_product_param {
 | 
						|
#    num_output: 1024
 | 
						|
#    weight_filler {
 | 
						|
#      type: "xavier"
 | 
						|
#    }
 | 
						|
#    bias_filler {
 | 
						|
#      type: "constant"
 | 
						|
#      value: 0.2
 | 
						|
#    }
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss2/relu_fc"
 | 
						|
#  type: "ReLU"
 | 
						|
#  bottom: "loss2/fc"
 | 
						|
#  top: "loss2/fc"
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss2/drop_fc"
 | 
						|
#  type: "Dropout"
 | 
						|
#  bottom: "loss2/fc"
 | 
						|
#  top: "loss2/fc"
 | 
						|
#  dropout_param {
 | 
						|
#    dropout_ratio: 0.7
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss2/classifier"
 | 
						|
#  type: "InnerProduct"
 | 
						|
#  bottom: "loss2/fc"
 | 
						|
#  top: "loss2/classifier"
 | 
						|
#  param {
 | 
						|
#    lr_mult: 1
 | 
						|
#    decay_mult: 1
 | 
						|
#  }
 | 
						|
#  param {
 | 
						|
#    lr_mult: 2
 | 
						|
#    decay_mult: 0
 | 
						|
#  }
 | 
						|
#  inner_product_param {
 | 
						|
#    num_output: 1000
 | 
						|
#    weight_filler {
 | 
						|
#      type: "xavier"
 | 
						|
#    }
 | 
						|
#    bias_filler {
 | 
						|
#      type: "constant"
 | 
						|
#      value: 0
 | 
						|
#    }
 | 
						|
#  }
 | 
						|
#}
 | 
						|
#layer {
 | 
						|
#  name: "loss2/loss"
 | 
						|
#  type: "SoftmaxWithLoss"
 | 
						|
#  bottom: "loss2/classifier"
 | 
						|
#  bottom: "label"
 | 
						|
#  top: "loss2/loss1"
 | 
						|
#  loss_weight: 0.3
 | 
						|
#}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4d/output"
 | 
						|
  top: "inception_4e/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4e/1x1"
 | 
						|
  top: "inception_4e/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4d/output"
 | 
						|
  top: "inception_4e/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 160
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4e/3x3_reduce"
 | 
						|
  top: "inception_4e/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4e/3x3_reduce"
 | 
						|
  top: "inception_4e/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 320
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4e/3x3"
 | 
						|
  top: "inception_4e/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4d/output"
 | 
						|
  top: "inception_4e/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4e/5x5_reduce"
 | 
						|
  top: "inception_4e/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4e/5x5_reduce"
 | 
						|
  top: "inception_4e/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4e/5x5"
 | 
						|
  top: "inception_4e/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_4d/output"
 | 
						|
  top: "inception_4e/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_4e/pool"
 | 
						|
  top: "inception_4e/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_4e/pool_proj"
 | 
						|
  top: "inception_4e/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_4e/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_4e/1x1"
 | 
						|
  bottom: "inception_4e/3x3"
 | 
						|
  bottom: "inception_4e/5x5"
 | 
						|
  bottom: "inception_4e/pool_proj"
 | 
						|
  top: "inception_4e/output"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "pool4/3x3_s2"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_4e/output"
 | 
						|
  top: "pool4/3x3_s2"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 2
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool4/3x3_s2"
 | 
						|
  top: "inception_5a/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 256
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5a/1x1"
 | 
						|
  top: "inception_5a/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool4/3x3_s2"
 | 
						|
  top: "inception_5a/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 160
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5a/3x3_reduce"
 | 
						|
  top: "inception_5a/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5a/3x3_reduce"
 | 
						|
  top: "inception_5a/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 320
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5a/3x3"
 | 
						|
  top: "inception_5a/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "pool4/3x3_s2"
 | 
						|
  top: "inception_5a/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 32
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5a/5x5_reduce"
 | 
						|
  top: "inception_5a/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5a/5x5_reduce"
 | 
						|
  top: "inception_5a/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5a/5x5"
 | 
						|
  top: "inception_5a/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "pool4/3x3_s2"
 | 
						|
  top: "inception_5a/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5a/pool"
 | 
						|
  top: "inception_5a/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5a/pool_proj"
 | 
						|
  top: "inception_5a/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5a/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_5a/1x1"
 | 
						|
  bottom: "inception_5a/3x3"
 | 
						|
  bottom: "inception_5a/5x5"
 | 
						|
  bottom: "inception_5a/pool_proj"
 | 
						|
  top: "inception_5a/output"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/1x1"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5a/output"
 | 
						|
  top: "inception_5b/1x1"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 384
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/relu_1x1"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5b/1x1"
 | 
						|
  top: "inception_5b/1x1"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/3x3_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5a/output"
 | 
						|
  top: "inception_5b/3x3_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 192
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/relu_3x3_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5b/3x3_reduce"
 | 
						|
  top: "inception_5b/3x3_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/3x3"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5b/3x3_reduce"
 | 
						|
  top: "inception_5b/3x3"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 384
 | 
						|
    pad: 1
 | 
						|
    kernel_size: 3
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/relu_3x3"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5b/3x3"
 | 
						|
  top: "inception_5b/3x3"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/5x5_reduce"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5a/output"
 | 
						|
  top: "inception_5b/5x5_reduce"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 48
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/relu_5x5_reduce"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5b/5x5_reduce"
 | 
						|
  top: "inception_5b/5x5_reduce"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/5x5"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5b/5x5_reduce"
 | 
						|
  top: "inception_5b/5x5"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    pad: 2
 | 
						|
    kernel_size: 5
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/relu_5x5"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5b/5x5"
 | 
						|
  top: "inception_5b/5x5"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/pool"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_5a/output"
 | 
						|
  top: "inception_5b/pool"
 | 
						|
  pooling_param {
 | 
						|
    pool: MAX
 | 
						|
    kernel_size: 3
 | 
						|
    stride: 1
 | 
						|
    pad: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/pool_proj"
 | 
						|
  type: "Convolution"
 | 
						|
  bottom: "inception_5b/pool"
 | 
						|
  top: "inception_5b/pool_proj"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  convolution_param {
 | 
						|
    num_output: 128
 | 
						|
    kernel_size: 1
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0.2
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/relu_pool_proj"
 | 
						|
  type: "ReLU"
 | 
						|
  bottom: "inception_5b/pool_proj"
 | 
						|
  top: "inception_5b/pool_proj"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "inception_5b/output"
 | 
						|
  type: "Concat"
 | 
						|
  bottom: "inception_5b/1x1"
 | 
						|
  bottom: "inception_5b/3x3"
 | 
						|
  bottom: "inception_5b/5x5"
 | 
						|
  bottom: "inception_5b/pool_proj"
 | 
						|
  top: "inception_5b/output"
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "pool5/7x7_s1"
 | 
						|
  type: "Pooling"
 | 
						|
  bottom: "inception_5b/output"
 | 
						|
  top: "pool5/7x7_s1"
 | 
						|
  pooling_param {
 | 
						|
    pool: AVE
 | 
						|
    kernel_size: 7
 | 
						|
    stride: 1
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "pool5/drop_7x7_s1"
 | 
						|
  type: "Dropout"
 | 
						|
  bottom: "pool5/7x7_s1"
 | 
						|
  top: "pool5/7x7_s1"
 | 
						|
  dropout_param {
 | 
						|
    dropout_ratio: 0.4
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "loss3/classifier"
 | 
						|
  type: "InnerProduct"
 | 
						|
  bottom: "pool5/7x7_s1"
 | 
						|
  top: "loss3/classifier"
 | 
						|
  param {
 | 
						|
    lr_mult: 1
 | 
						|
    decay_mult: 1
 | 
						|
  }
 | 
						|
  param {
 | 
						|
    lr_mult: 2
 | 
						|
    decay_mult: 0
 | 
						|
  }
 | 
						|
  inner_product_param {
 | 
						|
    num_output: 1000
 | 
						|
    weight_filler {
 | 
						|
      type: "xavier"
 | 
						|
    }
 | 
						|
    bias_filler {
 | 
						|
      type: "constant"
 | 
						|
      value: 0
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
layer {
 | 
						|
  name: "loss3/loss3"
 | 
						|
  type: "SoftmaxWithLoss"
 | 
						|
  bottom: "loss3/classifier"
 | 
						|
  bottom: "label"
 | 
						|
  top: "loss3/loss3"
 | 
						|
  loss_weight: 1
 | 
						|
}
 |