You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
8.2 KiB
210 lines
8.2 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/imperative/prepared_operator.h"
|
|
|
|
#include "paddle/fluid/framework/data_type_transform.h"
|
|
#include "paddle/fluid/imperative/infer_shape_context.h"
|
|
|
|
namespace paddle {
|
|
namespace imperative {
|
|
|
|
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
|
|
const std::shared_ptr<paddle::imperative::VarBase>& var) {
|
|
return var->SharedVar();
|
|
}
|
|
|
|
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
|
|
const std::shared_ptr<VariableWrapper>& var) {
|
|
return var;
|
|
}
|
|
|
|
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
|
|
if (var.IsType<framework::LoDTensor>()) {
|
|
return &(var.Get<framework::LoDTensor>());
|
|
} else if (var.IsType<framework::SelectedRows>()) {
|
|
return &(var.Get<framework::SelectedRows>().value());
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
template <typename VarType>
|
|
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
|
|
for (auto& pair : outs) {
|
|
for (auto& var : pair.second) {
|
|
if (var == nullptr) {
|
|
continue;
|
|
}
|
|
if (var->ForwardDataType() ==
|
|
static_cast<framework::proto::VarType::Type>(-1)) {
|
|
VLOG(6) << "Var (" << var->Name()
|
|
<< ")'s forward data type is not set.";
|
|
continue;
|
|
}
|
|
if (!framework::IsComplexType(var->DataType()) ||
|
|
framework::IsComplexType(var->ForwardDataType())) {
|
|
continue;
|
|
}
|
|
const auto* tensor = GetTensorFromVar(var->Var());
|
|
if (tensor && tensor->IsInitialized()) {
|
|
VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
|
|
<< " var `" << var->Name() << "` to "
|
|
<< framework::DataTypeToString(var->ForwardDataType())
|
|
<< " real var in dynamic graph.";
|
|
framework::Tensor out;
|
|
framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
|
|
*tensor, &out);
|
|
SetTensorToVariable(var->Var(), out, var->MutableVar());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PreparedOp::PreparedOp(const framework::OperatorBase& op,
|
|
const framework::RuntimeContext& ctx,
|
|
const framework::OpKernelType& kernel_type,
|
|
const framework::OperatorWithKernel::OpKernelFunc& func,
|
|
platform::DeviceContext* dev_ctx)
|
|
: op_(op),
|
|
ctx_(ctx),
|
|
kernel_type_(kernel_type),
|
|
func_(func),
|
|
dev_ctx_(dev_ctx) {}
|
|
|
|
template <typename VarType>
|
|
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
|
|
const NameVarMap<VarType>& outs,
|
|
const framework::OperatorWithKernel& op,
|
|
const platform::Place& place,
|
|
const framework::AttributeMap& attrs) {
|
|
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
|
|
auto* dev_ctx = pool.Get(place);
|
|
framework::RuntimeContext ctx({}, {});
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
// MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
|
|
// GetKernelType functions, so we need to copy the attributes there.
|
|
// Const qualifier of Attrs had to be discarded to overwrite it.
|
|
if (FLAGS_use_mkldnn) {
|
|
auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
|
|
mutable_op_attrs = attrs;
|
|
}
|
|
#endif
|
|
|
|
// 1. get expected kernel key
|
|
auto expected_kernel_key =
|
|
op.GetExpectedKernelType(DygraphExecutionContext<VarType>(
|
|
op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs));
|
|
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
|
|
|
|
// 2. check if op[type] has kernel registered.
|
|
auto& all_op_kernels = op.AllOpKernels();
|
|
auto kernels_iter = all_op_kernels.find(op.Type());
|
|
PADDLE_ENFORCE_NE(
|
|
kernels_iter, all_op_kernels.end(),
|
|
platform::errors::NotFound(
|
|
"There are no kernels which are registered in the %s operator.",
|
|
op.Type()));
|
|
|
|
auto& kernels = kernels_iter->second;
|
|
auto kernel_iter = kernels.find(expected_kernel_key);
|
|
#ifdef PADDLE_WITH_XPU
|
|
if (kernel_iter == kernels.end() &&
|
|
is_xpu_place(expected_kernel_key.place_)) {
|
|
expected_kernel_key.place_ = platform::CPUPlace();
|
|
kernel_iter = kernels.find(expected_kernel_key);
|
|
}
|
|
#endif
|
|
// TODO(jiabin): Add operator.cc's line 1000 part back when we need that case
|
|
PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
|
|
platform::errors::NotFound(
|
|
"Operator %s does not have kernel for %s.", op.Type(),
|
|
KernelTypeToString(expected_kernel_key)));
|
|
|
|
if (!(expected_kernel_key.place_ == place)) {
|
|
dev_ctx = pool.Get(expected_kernel_key.place_);
|
|
}
|
|
|
|
return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
|
|
}
|
|
|
|
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
|
|
const NameVarMap<VarBase>& outs,
|
|
const framework::OperatorWithKernel& op,
|
|
const platform::Place& place,
|
|
const framework::AttributeMap& attrs) {
|
|
return PrepareImpl<VarBase>(ins, outs, op, place, attrs);
|
|
}
|
|
|
|
PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
|
|
const NameVarMap<VariableWrapper>& outs,
|
|
const framework::OperatorWithKernel& op,
|
|
const platform::Place& place,
|
|
const framework::AttributeMap& attrs) {
|
|
return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs);
|
|
}
|
|
|
|
template <typename VarType>
|
|
static void PreparedOpRunImpl(
|
|
const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
|
|
const framework::OpKernelType& kernel_type,
|
|
const framework::OperatorWithKernel::OpKernelFunc& func,
|
|
platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
|
|
const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs) {
|
|
// TODO(zjl): remove scope in dygraph
|
|
framework::Scope scope;
|
|
|
|
DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
|
|
op.Type());
|
|
static_cast<const framework::OperatorWithKernel&>(op).InferShape(
|
|
&infer_shape_ctx);
|
|
|
|
func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
|
|
attrs));
|
|
|
|
/**
|
|
* [ Why need handle complex gradient to real gradient? ]
|
|
*
|
|
* After the introduction of complex number calculations, Ops that support
|
|
* complex number calculations generally support type promotion, such as
|
|
* x(float32) + y(complex64) = out(complex64), then the type of the grad
|
|
* tensor should be dout(complex64), dx(float32), dy (complex64).
|
|
*
|
|
* But because the dout is complex64, the dx is also complex64 after
|
|
* grad op kernel executed, we need to recognize this situation and
|
|
* convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
|
|
*/
|
|
if (framework::IsComplexType(kernel_type.data_type_)) {
|
|
HandleComplexGradToRealGrad<VarType>(outs);
|
|
}
|
|
}
|
|
|
|
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
|
|
const NameVarMap<VarBase>& outs,
|
|
const framework::AttributeMap& attrs) {
|
|
PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
|
|
outs, attrs);
|
|
}
|
|
|
|
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
|
|
const NameVarMap<VariableWrapper>& outs,
|
|
const framework::AttributeMap& attrs) {
|
|
PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
|
|
ins, outs, attrs);
|
|
}
|
|
|
|
} // namespace imperative
|
|
} // namespace paddle
|