You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
274 lines
11 KiB
274 lines
11 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "mkldnn.hpp"
|
|
#include "paddle/fluid/operators/activation_op.h"
|
|
#include "paddle/fluid/operators/mkldnn_activation_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using paddle::framework::Tensor;
|
|
using paddle::platform::MKLDNNDeviceContext;
|
|
|
|
namespace {
|
|
std::string gethash(const mkldnn::memory::dims &operand_dims,
|
|
const mkldnn::algorithm algorithm) {
|
|
auto dim2str = [](const mkldnn::memory::dims &operand_dims) {
|
|
std::string dstr = "";
|
|
for (size_t i = 0; i < operand_dims.size(); ++i) {
|
|
dstr += std::to_string(operand_dims[i]) + "-";
|
|
}
|
|
return dstr;
|
|
};
|
|
return dim2str(operand_dims) + std::to_string(algorithm);
|
|
}
|
|
|
|
template <typename T, typename ExecContext>
|
|
void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
|
|
const T alpha = 0, const T beta = 0) {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
|
const auto &mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
// get buffers
|
|
const auto *src = ctx.template Input<Tensor>("X");
|
|
const auto *src_data = src->template data<T>();
|
|
|
|
auto *dst = ctx.template Output<Tensor>("Out");
|
|
T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());
|
|
|
|
// get memory dim
|
|
PADDLE_ENFORCE(src->dims().size() == 2 || src->dims().size() == 4,
|
|
"Input dim must be with 2 or 4");
|
|
std::vector<int> src_tz = framework::vectorize2int(src->dims());
|
|
|
|
const std::string key = gethash(src_tz, algorithm);
|
|
const std::string key_src_data =
|
|
key + ctx.op().Output("Out") + "@eltwise_fwd_src_data";
|
|
const std::string key_src_mem = key + "@eltwise_fwd_src_mem";
|
|
const std::string key_dst_mem = key + "@eltwise_fwd_dst_mem";
|
|
const std::string key_fwd = key + "@eltwise_fwd";
|
|
|
|
auto p_fwd = std::static_pointer_cast<mkldnn::eltwise_forward>(
|
|
dev_ctx.GetBlob(key_fwd));
|
|
|
|
// save input data to be referred in backward path
|
|
auto p_src_data = std::make_shared<const T *>(src_data);
|
|
dev_ctx.SetBlob(key_src_data, p_src_data);
|
|
|
|
if (p_fwd == nullptr) {
|
|
// create memory description
|
|
auto data_md = src_tz.size() == 2
|
|
? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
|
|
mkldnn::memory::format::nc)
|
|
: platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
|
|
mkldnn::memory::format::nchw);
|
|
|
|
// create memory primitives
|
|
auto p_src_mem = std::make_shared<mkldnn::memory>(mkldnn::memory(
|
|
{data_md, mkldnn_engine}, platform::to_void_cast(src_data)));
|
|
dev_ctx.SetBlob(key_src_mem, p_src_mem);
|
|
|
|
auto p_dst_mem = std::make_shared<mkldnn::memory>(mkldnn::memory(
|
|
{data_md, mkldnn_engine}, platform::to_void_cast(dst_data)));
|
|
dev_ctx.SetBlob(key_dst_mem, p_dst_mem);
|
|
|
|
auto fwd_desc = mkldnn::eltwise_forward::desc(
|
|
mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);
|
|
auto p_fwd_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
|
|
fwd_desc, mkldnn_engine);
|
|
const std::string key_fwd_pd = key + "eltwise_fwd_pd";
|
|
dev_ctx.SetBlob(key_fwd_pd, p_fwd_pd);
|
|
p_fwd = std::make_shared<mkldnn::eltwise_forward>(
|
|
*p_fwd_pd, *(p_src_mem.get()), *(p_dst_mem.get()));
|
|
dev_ctx.SetBlob(key_fwd, p_fwd);
|
|
} else {
|
|
// primitives already exist
|
|
auto p_src_mem =
|
|
std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
|
|
PADDLE_ENFORCE(p_src_mem != nullptr,
|
|
"Fail to find eltwise p_src_mem in device context.");
|
|
auto p_dst_mem =
|
|
std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_dst_mem));
|
|
PADDLE_ENFORCE(p_dst_mem != nullptr,
|
|
"Fail to find eltwise p_src_mem in device context.");
|
|
|
|
p_src_mem->set_data_handle(platform::to_void_reinterpret_cast(src_data));
|
|
p_dst_mem->set_data_handle(dst_data);
|
|
}
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
std::vector<mkldnn::primitive> pipeline = {*(p_fwd.get())};
|
|
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
|
}
|
|
|
|
template <typename T, typename ExecContext>
|
|
void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
|
|
const T alpha = 0, const T beta = 0) {
|
|
auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
|
const auto &mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
// get buffers
|
|
const auto *out = ctx.template Input<Tensor>("Out");
|
|
|
|
auto *dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
|
|
const auto *diff_dst = dout->template data<T>();
|
|
|
|
auto *dx =
|
|
ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
|
|
const T *diff_src = dx->template mutable_data<T>(ctx.GetPlace());
|
|
|
|
// get memory dim
|
|
std::vector<int> src_tz = framework::vectorize2int(out->dims());
|
|
|
|
const std::string key = gethash(src_tz, algorithm);
|
|
const std::string key_diff_src_mem = key + "@eltwise_diff_src_mem";
|
|
const std::string key_diff_dst_mem = key + "@eltwise_diff_dst_mem";
|
|
const std::string key_grad = key + "@eltwise_grad";
|
|
|
|
const std::string key_src_data =
|
|
key + ctx.op().Input("Out") + "@eltwise_fwd_src_data";
|
|
const auto p_src_data =
|
|
std::static_pointer_cast<T *>(dev_ctx.GetBlob(key_src_data));
|
|
|
|
const std::string key_src_mem = key + "@eltwise_fwd_src_mem";
|
|
auto p_src_mem =
|
|
std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
|
|
p_src_mem->set_data_handle(*p_src_data.get());
|
|
|
|
auto p_grad = std::static_pointer_cast<mkldnn::eltwise_forward::primitive>(
|
|
dev_ctx.GetBlob(key_grad));
|
|
|
|
if (p_grad == nullptr) {
|
|
// create memory description
|
|
auto data_md = src_tz.size() == 2
|
|
? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
|
|
mkldnn::memory::format::nc)
|
|
: platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
|
|
mkldnn::memory::format::nchw);
|
|
|
|
// create memory primitives
|
|
std::shared_ptr<void> p_diff_src_mem =
|
|
std::make_shared<mkldnn::memory>(mkldnn::memory(
|
|
{data_md, mkldnn_engine}, platform::to_void_cast(diff_src)));
|
|
dev_ctx.SetBlob(key_diff_src_mem, p_diff_src_mem);
|
|
std::shared_ptr<void> p_diff_dst_mem =
|
|
std::make_shared<mkldnn::memory>(mkldnn::memory(
|
|
{data_md, mkldnn_engine}, platform::to_void_cast(diff_dst)));
|
|
dev_ctx.SetBlob(key_diff_dst_mem, p_diff_dst_mem);
|
|
|
|
auto bwd_desc = mkldnn::eltwise_backward::desc(algorithm, data_md, data_md,
|
|
alpha, beta);
|
|
|
|
const std::string key_fwd_pd = key + "eltwise_fwd_pd";
|
|
auto *p_fwd_pd = static_cast<mkldnn::eltwise_forward::primitive_desc *>(
|
|
dev_ctx.GetBlob(key_fwd_pd).get());
|
|
|
|
auto eltwise_bwd_prim_desc = mkldnn::eltwise_backward::primitive_desc(
|
|
bwd_desc, mkldnn_engine, *p_fwd_pd);
|
|
|
|
p_grad = std::make_shared<mkldnn::eltwise_backward>(
|
|
eltwise_bwd_prim_desc, *static_cast<mkldnn::memory *>(p_src_mem.get()),
|
|
*(static_cast<mkldnn::memory *>(p_diff_dst_mem.get())),
|
|
*(static_cast<mkldnn::memory *>(p_diff_src_mem.get())));
|
|
} else {
|
|
// primitives already exist
|
|
auto p_diff_src_mem = std::static_pointer_cast<mkldnn::memory>(
|
|
dev_ctx.GetBlob(key_diff_src_mem));
|
|
auto p_diff_dst_mem = std::static_pointer_cast<mkldnn::memory>(
|
|
dev_ctx.GetBlob(key_diff_dst_mem));
|
|
|
|
p_diff_src_mem->set_data_handle(
|
|
platform::to_void_reinterpret_cast(diff_src));
|
|
p_diff_dst_mem->set_data_handle(
|
|
platform::to_void_reinterpret_cast(diff_dst));
|
|
}
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
std::vector<mkldnn::primitive> pipeline = {*(p_grad.get())};
|
|
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
|
}
|
|
} // anonymous namespace
|
|
|
|
template <typename T, mkldnn::algorithm algorithm>
|
|
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
|
|
template <typename ExecContext>
|
|
void operator()(const ExecContext &ctx) const {
|
|
eltwise_forward<T>(ctx, algorithm);
|
|
}
|
|
};
|
|
|
|
template <typename T, mkldnn::algorithm algorithm>
|
|
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
|
|
template <typename ExecContext>
|
|
void operator()(const ExecContext &ctx) const {
|
|
eltwise_grad<T>(ctx, algorithm);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
using ReluMKLDNNFunctor =
|
|
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;
|
|
|
|
template <typename T>
|
|
using TanhMKLDNNFunctor =
|
|
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;
|
|
|
|
template <typename T>
|
|
using SqrtMKLDNNFunctor =
|
|
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;
|
|
|
|
template <typename T>
|
|
using AbsMKLDNNFunctor =
|
|
MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;
|
|
|
|
template <typename T>
|
|
using ReluMKLDNNGradFunctor =
|
|
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;
|
|
|
|
template <typename T>
|
|
using TanhMKLDNNGradFunctor =
|
|
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;
|
|
|
|
template <typename T>
|
|
using SqrtMKLDNNGradFunctor =
|
|
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;
|
|
|
|
template <typename T>
|
|
using AbsMKLDNNGradFunctor =
|
|
MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
|
|
REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace, \
|
|
ops::MKLDNNActivationKernel<ops::functor<float>>); \
|
|
REGISTER_OP_KERNEL( \
|
|
act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace, \
|
|
ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);
|
|
|
|
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro) \
|
|
__macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
|
|
__macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \
|
|
__macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \
|
|
__macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
|
|
|
|
FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);
|