You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
64 lines
2.3 KiB
64 lines
2.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/math/cross_entropy.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
template <typename T>
|
|
class CrossEntropyFunctor<platform::CPUDeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CPUDeviceContext& ctx, framework::Tensor* out,
|
|
const framework::Tensor* prob,
|
|
const framework::Tensor* labels, const bool softLabel) {
|
|
const int batch_size = prob->dims()[0];
|
|
if (softLabel) {
|
|
auto in = EigenMatrix<T>::From(*prob);
|
|
auto lbl = EigenMatrix<T>::From(*labels);
|
|
auto loss = EigenMatrix<T>::From(*out);
|
|
|
|
loss.device(*ctx.eigen_device()) =
|
|
-((lbl * in.log().unaryExpr(math::TolerableValue<T>()))
|
|
.sum(Eigen::DSizes<int, 1>(1))
|
|
.reshape(Eigen::DSizes<int, 2>(batch_size, 1)));
|
|
} else {
|
|
const int class_num = prob->dims()[1];
|
|
const T* prob_data = prob->data<T>();
|
|
T* loss_data = out->data<T>();
|
|
|
|
const int64_t* label_data = labels->data<int64_t>();
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
int lbl = label_data[i];
|
|
PADDLE_ENFORCE_GE(lbl, 0);
|
|
PADDLE_ENFORCE_LT(lbl, class_num);
|
|
int index = i * class_num + lbl;
|
|
loss_data[i] = -math::TolerableValue<T>()(std::log(prob_data[index]));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template class CrossEntropyFunctor<platform::CPUDeviceContext, float>;
|
|
template class CrossEntropyFunctor<platform::CPUDeviceContext, double>;
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|